

Symposium on Thermoacoustics in Combustion 2023 Industry meets Academia

11-14 September 2023 - ETH Zürich - Zürich, Switzerland

Program Booklet

https://SoTiC2023.ethz.ch

Impressum

ETH Zürich Department of Mechanical and Process Engineering Laboratory of Combustion and Acoustics for Power & Propulsion Systems

Sonneggstrasse 3 8092 Zürich Switzerland

www.caps.ethz.ch

SoTiC 2023 – Zürich

Symposium on Thermoacoustics in Combustion: Industry meets Academia

Edited by Matteo Impagnatiello | Florian Radack

Cover Image © ETH Zürich / Gian Marco Castelberg

Contents

Welcome Note	5
Scientific Committee Nicolas Noiray Bruno Schuermans Mirko Bothien Thomas Sattelmayer	6 6 7 7
Invited Speakers Sébastien Candel James R. Dawson André Fischer Fei Han Justin Hardi Matthew Juniper Kyu Tae Kim Deanna Lacoste	9 9 10 10 11 11 12 12
General Information Welcome to Zurich Campus Map and Symposium Location Transportation Connecting to the Internet Paper Download Best Paper Award Logistics Events Map	13 13 14 15 16 16 16 17 18
Schedule at a Glance	19
Detailed Session Schedule	21
Abstracts	43

Welcome Note

It is a great pleasure for me to host this third edition of the Symposium on Thermoacoustics in Combustion (SoTiC) at ETH Zürich. This research field is more topical than ever, with the development of sustainable technologies for power generation and aeronautics, as well as with the development of new space launchers. A notable example of these new challenges is the control of thermoacoustic instabilities in the upcoming combustion chambers that will soon enable the on-demand combustion of pure H₂ produced without CO_2 emissions.

The first SoTiC, which was initiated in 2016 by Thomas Sattelmayer and Bruno Schuermans at the Technical University of Munich, was a great success on several levels: there were a large number of participants in relation to the size of our community; the quality of the presented papers was high; the invited speakers had given an excellent overview of the scientific challenges and successes at that time; a stimulating atmosphere also resulted from

Nicolas Noiray ETH Zürich, Switzerland

Professor of Thermodynamics at the Department of Mechanical and Process Engineering Head of the Laboratory of Combustion and Acoustics for Power and Propulsion Systems (CAPS)

the participation of many researchers from industry in the scientific program; and finally, the two communities of researchers working respectively for rocket propulsion and gas turbine technologies were brought together thanks to this new symposium. The second edition, organized by Thomas Sattelmayer and Mirko Bothien, was for me, and I think for many of you, one of the best online conference experiences during the Covid period. The format they had defined was very judicious and enabled this event of high scientific quality to be very productive, lively, and interactive, despite the virtual nature of the exchanges imposed by the pandemic.

The bar was therefore set very high when Thomas, Mirko and Bruno approached me to host the third edition at ETH Zürich. I would like to thank them warmly for their trust. As I write these few lines two weeks before the start of the conference, I can already say that all the ingredients are in place to make SoTiC 2023 another success. Sixty papers will be presented at the symposium, with authors coming from all over the world. I sincerely thank all these authors. I also particularly thank the invited speakers for having accepted to participate to the SoTiC 2023: Sébastien Candel (CentraleSupelec, France), James Dawson (Norwegian University of Science and Technology, Norway), André Fischer (Rolls Royce Deutschland, Germany), Fei Han (GE Research, United States of America), Justin Hardi (German Aerospace Center, Germany), Matthew Juniper (University of Cambridge, United Kingdom), Kyu Tae Kim (Korea Advanced Institute of Science and Technology, South Korea) and Deanna Lacoste (King Abdullah University of Science and Technology, South Korea) and Deanna Lacoste (King Abdullah University of Science and Technology, South Korea) and Deanna Lacoste (King Abdullah University of Science and Technology, South Korea) and Deanna Lacoste (King Abdullah University of Science and Technology, Saudi Arabia). I am also very grateful to the symposium sponsors for their significant financial contribution. Finally, I thank Anna Michailidis for having greatly coordinated the organization of the symposium, as well as Matteo Impagnatiello, Richard Martin and Florian Radack, doctoral students at CAPS, for the high efforts they invested in it.

I look forward to welcoming you to ETH Zürich very soon.

Nicolas Doirty

Prof. Dr. Nicolas Noiray

ETH Zürich, Switzerland

Head of the Laboratory of Combustion and Acoustics for Power & Propulsion Systems (CAPS) Nicolas Noiray is Associate Professor at ETH Zürich, where he established the laboratory of Combustion and Acoustics for Power and Propulsion Systems in 2014. He obtained his Ph.D. from Ecole Centrale Paris in 2007, and then worked in the Gas Turbine Research Division of Alstom until his appointment at ETH. His research activities in the fields of combustion, acoustics and fluid mechanics address fundamental and applied problems, which are relevant for the development of workable and sustainable technologies in the energy and transport sectors. He received several academic and industrial awards, including the Silver Medal and the Hiroshi Tsuji Early Career Researcher Award of the Combustion Institute and the Alstom Innovation Award. In 2019, he was awarded a Consolidator Grant by the European Research Council. A key theme of the experimental, theoretical and numerical research performed by his group is the study of flow instabilities at various time and length scales.

Dr. Bruno Schuermans

ETH Zürich, Switzerland

Senior Scientic Collaborator at the Laboratory of Combustion and Acoustics for Power & Propulsion Systems (CAPS) Dr. Bruno Schuermans received his master's in mechanical engineering from Delft University and a PhD degree from Swiss Federal Institute of Technology in Lausanne (EPFL). He did research and development in the field of gas turbine combustion at ABB, Alstom and General Electric where he was a Consulting Engineer until 2020. Dr. Schuermans then joined the Swiss Federal Institute of Technology in Zurich (ETHZ) as a Senior Scientific Associate. In parallel he has founded a consultancy company in the field of thermoacoustics: Schuermans Science&Engineering. Throughout his career he has been active in thermoacoustics and combustion control; always with a focus to use the latest scientific developments to solve real world engineering challenges.

Prof. Dr. Mirko Bothien

ZHAW, Switzerland Head of Renewable Energies, IEFE, ZHAW Associate Professor, Dept. of Energy & Process Engineering, Norwegian University of Science & Technology

Mirko Bothien is currently Head of Renewable Energy at the Institute of Energy Systems and Fluid Engineering, Zurich Applied University of Sciences (ZHAW) and Associate Professor at the Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU). His research is on the use of alternative fuels for decarbonizing the energy system with a focus on combustion dynamics. Before pursuing his research objectives in academia, he worked over 15 years in research and development with Ansaldo Energia, Alstom Power and Siemens Energy as expert for thermoacoustics and in different managerial roles. From 2016 to 2020, he was Head of Combustor Technology at Ansaldo Energia Switzerland developing key technologies for using hydrogen in gas turbines. From 2017 to 2020, he was Member of Board of the Norwegian CCS Research consortium - an international research cooperation on CO₂ capture, transport and storage. In 2018, he was awarded with the Rudolf Diesel Industry Fellowship of the Institute for Advanced Study, TU Munich for conducting research in thermoacoustics. Dr.-Ing. Bothien co-authored 95 technical publications and 50 invention disclosures in the field of gas turbine combustion dynamics and alternative fuels.

Prof. Dr. Thomas Sattelmayer

Technische Universität München, Germany

Former Chair of Thermodynamics (1997-2021) After 11 years in industry at BBC/ABB Thomas Sattelmayer joined the Technical University of Munich as Thermodynamics Professor. He was Chair of the Thermodynamics Institute from 1997 until his retirement in 2021. His research interests are related to Thermofluiddynamics with special focus on Power Systems, Reliability & Safety, Mobility and Water. His research in combustion includes thermoacoustics instabilities, turbulent flame noise, flame propagation, self ignition and engine knock, turbulent mixing, pollutant formation, supersonic combustion, transition from deflagration to detonation and alternative fuels. Research projects in two-phase flow and heat transfer include energy systems, atomization, multiphase flows, subcooled boiling and catalytic exhaust gas treatment. He received the IGTI John P. Davis Award in 1990, the Asea Brown Boveri Technology Achievement Award in 1993, the ASME Gas Turbine Award in 2002 and 2011, the Innovation Award of the Global Power and Propulsion Society (GPPS) in 2017 and the IGTI Industrial Gas Turbine Technology Award in 2020. He published a total of more than 600 papers, including about 200 journal publications and some book chapters. So far, more than 120 students have completed their doctorates at the Thermodynamics Institute under his supervision.

The future is our starting point

Every day, we're working to help move the world forward. Today, and for generations to come. The future of flight starts now.

Prof. Dr. Sébastien Candel

CentraleSupelec, University of Paris-Saclay University Professor Emeritus

Sébastien Candel is University Professor Emeritus at CentraleSupelec, University of Paris-Saclay. Engineer from the Ecole Centrale Paris, PhD from the California Institute of Technology (Caltech), he holds a doctorate in science from the university of Paris 6. His combustion research on flame structures, dynamics and control, turbulent flame modeling and simulation, transcritical combustion of cryogenic propellants, and his fundamental contributions to aeroacoustics have applications in the energy sector and in the field of aeronautical and space propulsion. Among many distinctions, Sébastien Candel received the Marcel Dassault grand prize from the Académie des sciences, the Pendray aerospace literature award from the AIAA, the Zeldovich gold medal of the Combustion Institute. Fellow of the AIAA and of the Combustion Institute, he is a member and former president of the French Academy of Sciences, a founding member of the Academy of Technologies, and a foreign member of the US National Academy of Engineering.

Presentation 🗞 Abstract 🗞 Full-Text 🗹

Prof. Dr. James R. Dawson

Norwegian University of Science and Technology

Professor & Deputy Head of Department for Research Department of Energy and Process Engineering James Dawson is Professor of Fluid Mechanics and Deputy Head of Department (for research) of Energy and Process Engineering at the Norwegian University of Science and Technology (NTNU). Prior to joining NTNU in 2013, EPSRC Advanced Research Fellow at the Department of Engineering at the University Cambridge and Fellow of New Hall (now Murray Edwards College). He received his PhD from Cardiff University, UK. Professor Dawson's research interests are in the general areas of gas turbine combustion and fluid mechanics. His current research is focused on combustion of zero carbon fuels, namely hydrogen and ammonia, and was recently appointed to the editorial board of Combustion and Flame. He has received a number of awards which include a 5-year Advanced Research Fellow from the EPSRC (UK engineering and physical sciences research council), Garden Award for by the British section of the Combustion Institute (2013), a best paper award from ASME (2021), and a distinguished paper award at the 39th International Combustion Symposium (2022). He also led an EU funded Innovative Training Network (ITN) on annular combustion, ANNULIGhT,

Dr. André Fischer

Rolls Royce Deutschland Ltd

Aerothermal Engineer for Combustion Noise and Thermoacoustics

Dr. Fei Han

GE Research Engineering Manager, Combustion Dynamics & Diagnostics Lab André Fischer is an aerospace engineer with more than 15 years of work experience in industrial and academic environments. He did his PhD at TU-Berlin on laser optical measurement for acoustics in turbomachinery in strong cooperation with the German Aerospace Centre (DLR), Institute of Propulsion Technology, Department of Engine Acoustics. Since 2015 André Fischer is working at Rolls-Royce Deutschland in the combustor development group responsible for thermoacoustics and combustion noise. In his role, he gathered many experience in experimental work from engine testing to combustor-rig testing at various TRL levels and thermoacoustic modeling from low order to high fidelity 3D simulations.

Presentation %

Dr. Fei Han is a senior principal engineer in the area of gas turbine combustion at GE Research. Since joining GE in 1999, Dr. Han has conducted extensive research & development in the area of combustion dynamics, ranging from development of combustion dynamics modeling tools, development and implementation of various dynamics mitigation technologies, and techniques for combustion dynamics experiments for gas turbines, aero engines, and augmentors. He also served as the manager of a combustion team at GE Research from 2011 to 2017, leading a team of engineers and technicians in developing new technologies and maturing technology levels for combustion dynamics and diagnostics. Fei is the author of more than 30 peer-reviewed publications and over 75 GE internal publications, and currently holds 24 US patents. Fei holds a BS and Master degree in Acoustics from Nanjing University, China, and a Ph.D. degree in Mechanical Engineering from Purdue University, USA.

Dr. Justin Hardi

German Aerospace Center (DLR) Head of Rocket Propulsion

Technology Department

Justin Hardi graduated with a double degree in Aerospace Engineering and Physics from the University of Adelaide in Australia, then moved to Germany to work on the topic of combustion instabilities in cryogenic rocket engines at the German Aerospace Center (DLR), Institute of Space Propulsion, Lampoldshausen. After receiving his PhD in 2012, he went to Purdue University in the US to work as a research associate in the Zucrow Propulsion Labs. Following this placement, he returned to DLR to lead the Combustion Dynamics research team at the Institute of Space Propulsion, conducting experimental and numerical research on ignition, transient flow phenomena, and combustion instabilities. In this role, he led international research collaborations as well as technology development projects for the European Space Agency. In 2020, Dr. Hardi became Head of the Rocket Propulsion Technology Department, responsible for R&T activities on cryogenic engine components.

Presentation %

Prof. Dr. Matthew Juniper

University of Cambridge Professor of Thermofluid Dynamics Matthew Juniper is Professor of Thermofluid Mechanics at the University of Cambridge. He completed his PhD in Cryogenic Combustion from Ecole Central Paris in 2001 and was appointed Lecturer in Combustion at the Engineering Department in 2003. His research interests are in flow instability, adjoint-based sensitivity analysis, shape optimization, and physics-based Bayesian inference, particularly when accelerated with adjoint codes. He is an Associate Editor of the Journal of Fluid Mechanics and has held visiting fellowships/professorships at Ecole Central Lyon, the Institute for Advanced Studies at TU Munich, KTH/Nordita Stokholm, IIT Madras, and the Center for Turbulence Research Summer Program at Stanford University.

Prof. Dr. Kyu Tae Kim

Korea Advanced Institute of Science and Technology (KAIST)

Associate Professor of Aerospace Engineering

Kyutae Kim is an Associate Professor of Aerospace Engineering at KAIST, and EIRC Director for Carbon Neutral Gas Turbine Combustion Technology. He received his PhD in Mechanical Engineering from Penn State in 2009. After completion of his PhD, he accepted a Marie Curie Fellowship at the University of Cambridge, and then he worked at General Electric, where he contributed to the development of GE's advanced gas turbine engines, including GE9X and 9HA.01. In 2016, he joined KAIST. His current research efforts focus on (i) combustion instabilities in aircraft and heavy-duty gas turbine combustors, including low- and high-frequency instabilities associated with bulk, longitudinal, and transverse modes; (ii) hydrogen/ammonia-based carbon-free and low-carbon gas turbine combustion, including radial and axial fuel staging concepts; (iii) physics-based and data-driven modeling, including reduced-order modeling, numerical simulations, machine-learning and complex network frameworks.

Presentation %

Prof. Dr. Deanna Lacoste

King Abdullah University of Science and Technology (KAUST)

Associate Professor of Mechanical Engineering Deanna Lacoste is an associate professor of mechanical engineering at the King Abdullah University of Science and Engineering (KAUST), in Saudi Arabia. She graduated with a Ph.D. in combustion science from the University of Poitiers, France, in 2002. After eleven years with the French CNRS, at CentraleSupelec, in 2014 she joined KAUST. Since 2021, she has been an associate professor at the Clean Combustion Research Center, KAUST. She is an editorial board member of the Applications in Energy and Combustion Science journal, and an associate editor for the Proceedings of the Combustion Institute. Her research mainly focusses on plasma-assisted combustion, nonequilibrium plasma discharges at atmospheric pressure, control of flame dynamics, and detonation.

General Information

Welcome to Zurich

Zurich has a unique position in Switzerland. It is the country's largest city and home to an internationally reputed financial centre as well as being the focus of an economic region which acts as the motor of Switzerland, and along with Geneva is the most important gateway to the country.

The wide variety of cultural activities and educational institutions define Zurich's character as a diverse, open city with a passion for life. Zurich is the capital of the canton of the same name and the centre of a number of regions which together have some 1.9 million inhabitants. It is famous for its lakeside location and green, densely wooded chain of hills which run through the city from north to south.

Zurich's place on the world stage does not come down to its size but to its strong international networks. The high standards of living, working and accommodation are regularly confirmed in surveys of the local residents, and Zurich consistently finds itself at the top of international rankings of cities in terms of quality of life.

Campus Map and Symposium Location

The conference will take place at the main building, *Hauptgebäude* (HG), of ETH Zürich, located at Rämistrasse 101, 8092 Zürich.

Transportation

Travelling from from Zurich Central Station

From the "Bahnhofstrasse/HB" stop

Tram no. 6 (towards the Zoo) as far as the "ETH/Universitätsspital" stop. *Journey time: approx. 6 minutes*

From the "Bahnhofplatz/HB" stop

Tram no. 10 (towards the Airport or Oerlikon station) as far as the "ETH/Universitätsspital" stop or Tram Nr. 3 (towards Klusplatz) as far as the "Central" stop (1 stop), from "Central" by Polybahn (departs every three minutes) to the Polyterrasse.

Journey time: approx. 8 minutes

You will require a ticket that is valid for zone 110 (city of Zurich).

Travelling from From Zurich Airport

By tram (From the "Zurich Airport" tram stop)

Tram no. 10 (towards Bahnhofplatz/HB) as far as the "ETH/Universitätsspital" stop. The tram runs every 7 to 15 minutes between 6 o'clock in the morning and 11 o'clock at night. *Journey time: 30 minutes*

By rail

If you wish to travel from the airport to the city centre (Central Station), you are recommended to use the S-Bahn or mainline services. The trains depart from the "Zurich Airport" station *Journey time: approx. 10 minutes*

You will require a ticket valid for 3 zones. If you are spending the whole day in Zurich, it is worth buying a day pass (valid for 24 hours). A 24h ticket costs only twice as much as a regular one-way ticket.

Car Parking

Wheelchair users arriving by car will find a marked parking space in the passage underground "Leonhardstrasse", under the Polyterrasse, on the left-hand side of the bus stop, as well as marked parking spaces on the ground floor (parking deck D) of the multi-storey car park, accessible via Karl-Schmid-Strasse. The barrier-free access to the main building is signposted.

By handing in your parking ticket at Campus Info (report to reception on the ground floor), you will be given a free exit ticket.

Connecting to the Internet

Guests visiting ETH can connect to the internet using WIFI for 24 hours through one of the following SSIDs: public (2.4GHz) and public-5 (5GHz). Depending on your device and software, a login window will pop up. If not you may need to open a browser and navigate to any page outside of ETH, e.g. www.google.com. On the landing page, choose **Login for ETH guests**. You then have the option to register for access via SMS or E-Mail. You will then receive an SMS with an access code or an E-Mail with a link to validate the network access.

Alternatively, guests from other universities around the world may also have the option to access the eduroam network at ETH using their home university account.

More information can be found here.

Paper Download

The complete collection of papers submitted to the conference can be downloaded from here.

Individual papers can be downloaded from the links provided in Detailed Session Schedule or in Abstracts.

Best Paper Award

On the last day of the conference all SoTiC 2023 registrants will have the opportunity of recommending two best papers on the basis of outstanding writing quality, a high degree of originality, and an unusual contribution to science and engineering. Both awards are endowed with 500€ each. The **Best Fundamental Paper Award** recognizes the publication with the greatest contribution to fundamental understanding in the field of thermoacoustics, and the **Best Technical Paper Award** recognises the publication with the greatest technical relevance of all papers submitted to SoTiC 2023.

Only one vote per participant for each category is permitted. Participants are not allowed to vote for their own paper or for a paper submitted by their research group.

Follow the Link to the Form to cast your votes! Please provide the email address associated with your conference registration for a valid vote submission.

Logistics

Registration (Main Building – Entrance Hall)

Registration will be open on Monday 11 September 2023 from 8.00 to 13.00. Please collect your nametag, which you will need to access the conference venue. Please wear your nametag at all times in order to get access to the coffee and lunch breaks and all social events you have registered for.

Coffee and Lunch Break (Main Building Foyer E-Nord)

All coffee and lunch breaks will be located in front of the two presentation rooms. See map at the next page.

Welcome Apéro (Main Building – Main Hall)

The welcome Apéro will take place on the 11th September 2023 after the last session in the main hall (behind the registration desk) and next to the presentation room.

Factory Tours

Buses have been organized for the transfer to the Factory Tours at Ansaldo and Kistler. Only registered participants will be allowed to enter the bus. Please leave the last presentation on Tuesday 12th September 2023 at 15.30 and proceed swiftly to the bus station. A SoTiC staff member will guide you.

For the CAPS Lab Tour only registered participants will be allowed to enter the lab facility. Meeting point is at the coffee break area after the last session.

Conference Dinner (Main Building Dozentenfoyer K-Floor)

The dinner will take place at the Dozentenfoyer, please find the location on the map. Please keep your nametag visible at the entrance and during the evening. A wardrobe next to the venue will be available for us only.

Events Map

Schedule at a Glance

	Monda	y 11/09	Tuesda	iy 12/09	Wedneso	day 13/09	Thursda	ay 14/09
08:00-08:30	Regis	tration						
08:30-09:00	and C	Coffee						
09:00-09:30	Welcome	e Speech	19. D	aweon	IS: Fi	echor	19.1	Han
09:30-10:00	18.0	andel	10. Do	2000	10.11	301101	10.1	
10:00-10:30	10.0		Coffee	Break	Coffee	Break	Coffee	Break
10:30-11:00	Coffee	Break	30	52	14	21	8	49
11:00-11:30	28	45	31	53	15	22	9	50
11:30-12:00	29	46	32	54	16	23	10	51
12:00-12:30	Lu	nch	L I II	nch	1.0	nch	I.u	hch
12:30-13:00								
13:00-13:30	IS I	lardi	IS: Ji	Iniper	IS' La	icoste	IS	Kim
13:30-14:00		iai ai			.0120		.0.	
14:00-14:30	35	1	Coffee	Break	17	24	11	57
14:30-15:00	36	2	33	55	18	25	12	58
15:00-15:30	37	3	34	56	19	26	13	59
15:30-16:00	38	4	Facto	rv/l ab	20	27	Closing No	te and Best
16:00-16:30	Coffee	Break		re at:	Coffee	Break	Paper Awar	d Ceremony
16:30-17:00	39	5	1001	5 al.	42	47		
17:00-17:30	40	6	Ans	aldo	43	48		
17:30-18:00	41	7	Kis	tler	44			
18:00-18:30			CAP	S Lab				
18:30-19:00	Welcom	e Anéro		0 240				
19:00-19:30	Weidelin							
19:30-20:00					Banque	t Dinner		
20:00-20:30					Danque			
20:30-21:00								
21:00-21:30								

LEADING A NEW ERA OF **ENERGY**.

Addressing the climate crisis is an urgent global priority. If we want our energy future to be different ... we must be different. That is our singular mission.

GE, the 130-year-old energy pioneer. Our unwavering commitment to powering the planet, now fully focused on the energy transition. No company has the unique combination to pioneer what's next – just as we have before. As we answer the call with renewed purpose and vigor, we are moving our GE energy businesses—including Renewables, Power, Digital and Energy Financial Services — under one banner to deliver a united, focused, one-of-a-kind force: GE Vernova. Together, with our customers and partners, we will chart the course to a better future.

Our mission is embedded in our new name. We retain our treasured birthright, "GE," in our name as an enduring and hard-earned badge of quality and ingenuity. "Ver," "verde," "verdant," all signal Earth's verdant and lush ecosystems. "Nova," from the Latin "novus," nods to a new, innovative era of lower carbon energy that GE Vernova will help deliver.

Our new name sounds different, because it is. GE Vernova will act swiftly and surely to help build a cleaner, better future. This is not business as usual: this is business purpose-built to lead the new era of energy.

Visit GEVernova.com to learn more.

GE VERNOVA

Monday 11/09/2023 - 9:30-10:30

Invited Speaker

Room Helmholtz

Prof. Dr. Sébastien Candel

Key factors in combustion instability analysis of annular systems

The considerable effort made in recent years to analyze combustion instabilities in annular systems will be reviewed to examine the state of knowledge and identify issues that need further consideration. A theoretical framework relying on an acoustic energy balance is also proposed to analyze some of the key factors, estimate the growth rate of instabilities coupled by azimuthal modes and guide efforts aimed at predicting domains of instability and at reducing oscillations. This will be illustrated with an analysis of the acoustic power flow in injection units and with investigations of azimuthal instabilities in a laboratory scale annular combustor.

Bio % Abstract % Full-Text 🗹

Monday 11/09/2023 - 11:00-12:00

Passive and Active Con of Instabilities	trol Room Helmholtz	Stability Analysis and Room Uncertainty Quantification Rayleigh		
STC 28	11:00-11:30	STC 45 11:00-11:3		
Discussion on the limita criteria as figures of me thermoacoustic quality flames	ations of the κ and μ wit to evaluate the of burners with	Prediction of autoignition-stabilized flame dynamics in a backward-facing step reheat combustor configuration		
F. Ganji, Kornilov, van Oij	en, Lopez Arteaga	Gopalakrishnan, Heggset, Gruber, Bothi Moeck		
Page 53 Abstrac	ct 🗞 🛛 Full-Text 🗹	Page 56 Abstract 🗞 Full-Text C		
STC 29	11:30-12:00	STC 46 11:30-12:0		
A reduced-order model thermoacoustic instabil combustor	for the control of ities in a dump	An efficient computational model to estimate the flame transfer function of non-premixe jet diffusion flames		
Bourny, Sarotte, Genot, T	heilliol	Giraudi, Morgans, Picciani		
Page 48 Abstrac	ct 🗞 🛛 Full-Text 🗹	Page 55 Abstract 🗞 Full-Text C		

Monday 11/09/2023 - 13:00-14:00

Invited Speaker

Room Helmholtz

Dr. Justin Hardi

Windows into the inferno: experiments for cryogenic rocket combustion instability

The Combustion Dynamics Team of the Department of Rocket Propulsion Technology at DLR Lampoldshausen has been studying combustion instabilities using high power rocket combustion experiments for more than two decades. The stability characteristics of sub-scale rocket thrust chambers with liquid oxygen and either hydrogen or methane propellants are explored, and the interaction of combustion chamber processes with acoustics are visualised under conditions highly representative of those in launcher engines. The experiments provide insights into the mechanisms which drive combustion instabilities and serve as test cases for numerical modelling.

Bio 🗞

Monday 11/09/2023 - 14:00-16:00

Physical Mecha Response	nisms, Flame	Room Helmholtz		
STC 35		14:00-14:30		
Contribution of Thermoacoustic Jet in Cross-flow Bonnaire, Panek	Shear Layer Dy c Instabilities fo w , Polifke	namics to r a Reacting		
Page 48	Abstract 🗞	Full-Text 🗹		
STC 36		14:30-15:00		
Towards the Prediction of Flame Transfer Functions: Evaluation of a Hybrid LES-CAA with Compressible LES Reinhardt, Alanyalıoğlu, Fischer, Lahiri, Nicolai, Hasse				
Page 62	Abstract 🗞	Full-Text 🗹		
STC 37		15:00-15:30		
Dynamics of vortex-flame interaction in a novel swirl combustor				
Page 62	Abstract %	Full-Text 🔀		
1 age 02				
STC 38		15:30-16:00		
Comparison of a release rate bas for a lean-burn i conditions Alanyalioglu, Rei Hasse	acoustic, optica ed flame transf njector under e inhardt, Fischer,	al, and heat er functions engine-like Lahiri, Nicolai,		

Page 44	Abstract 🗞	Full-Text 🖸
---------	------------	-------------

Annular, Ca Transverse	n-Annular & Modes	Room Rayleigh
STC 1		14:00-14:30
Experiments geometry of two-can sys	s on the effect of c n the whistling pho tem	ross-talk enomenon in a
Blonde, Schu Page 46	Abstract S	Full-Text 🔽
Tage +0	Abstract	
STC 2		14:30-15:00
their annula Pedergnana,	r limits Orchini, Moeck, No	biray
Page 61	Abstract 🗞	Full-Text 🖸
STC 3		15:00-15:30
Network- an Frequency I Combustors Rosenkranz.	d CFD/CAA-Modell Flame Response ir S Neu, Sattelmaver	ling of the High n Multi-Jet
Page 64	Abstract 🗞	Full-Text 🖸
STC 4		15:30-16:00
Linearized N acoustic mo thrust cham	Navier-Stokes mod odes in a LOX/Meth ber	elling of nane rocket
Trotta, Arma Suslov, Traud	oruster, Schneider, dt, Zandbergen	Hardi, Börner,

Page 67 Abstract S Full-Text

Monday 11/09/2023 - 16:30-20:00

Physical Mechanisms, Flame	Room
Response	Helmholtz
STC 39	16:30-17:00

Influence of wall-to-wall radiative heat transfer on premixed flame dynamics

Dásor	Edor	Silva	Polifka
Desor,	⊏uer,	Silva,	FOIIIKE

Page 51	Abstract 🗞	Full-Text 🗹
STC 40		17:00-17:30

Experimental investigation of self-sustained thermoacoustic instabilities in pure hydrogen swirling flames

Vaysse, Durox, Vicquelin, Candel, Renaud				
Page 68	Abstract 🗞	Full-Text 🗹		
STC 41		17:30-18:00		
On the significance of modeling turbulent				
transport when linearizing the governing equations of a turbulent Bunsen flame				
Kaiser, von S Zhang, Zirwe	aldern, Goldack, I s, Bockhorn, Oberl	Polifke, Varillon, eithner		

Annular, Can-A Transverse Mo	Annular & des	Room Rayleigh		
STC 5		16:30-17:00		
A model of acoustic reflection coefficient in the transition ducts of can-annular combustors based on mode matching method Wang, Yang, Zhu				
Page 70	Abstract 🗞	Full-Text 🗹		
STC 6 Predicting non in annular com low-order netw experimentally Functions Wang, Laera, Ya Page 69	Ilinear thermoad obustors by com ork model and or-measured Flan ang Abstract %	17:00-17:30 coustic modes abining a 2D ne Describing Full-Text 2		
STC 7 17:30-18:00 Intermittency transition to azimuthal instability in a turbulent annular combustor				
Singh, Bhavi, R Suiith	., Bhaskaran, Mis	shra, Chaudhuri,		

,		
Page 65	Abstract 🗞	Full-Text 🗹

18:00-20:00

Main Hall	
	Welcome Apéro

is pleased to sponsor the Sotic - Symposium on Thermoacoustics in Combustion.

Combustion Bay One e.U. is an engineering company specialising in advanced combustion management. For your research and development needs, we assist you with your high technology risk projects. We design your burner.

We conceive, validate and supply the heat and pressure stressed parts of your test rig. We help you with your instrumentation and data processing. We perform simulations and tests for you.

Active in the field of combustion stability research, CBOne offers technologies such as a calibrated pulsator (siren models 3G and E) and combined optic-acoustic probes (emootion probe). These are capable of reproducing and accurately describing the behaviour of a flame in the presence of thermoacoustic coupling.

You can visit us at www.CBOne.at and write to us at Office@CBOne.at

Have a great symposium!

Detailed Session Schedule

Tuesday 12/09/2023 - 9:00-10:00

Invited Speaker

Room Helmholtz

Prof. Dr. James R. Dawson

The thermoacoustic response and flame dynamics of hydrogen-methane blends

I will present a summary of what we have learned from several years of research at NTNU into the main effects that increasing hydrogen mass fraction has on the thermoacoustic response and flame dynamics of premixed hydrogen/methane blends. An effective and simple method to modify the Flame Transfer Function (FTF) through controlled hydro-dynamic interference between the shedding of vortices from bodies upstream of the flame and the vortex roll-up at the flame base caused by acoustic forcing will be discussed. Finally, I will discuss some aspects of how increasing the hydrogen mass fraction has on the non-linear response of the flame.

Bio 🗞

Tuesday 12/09/2023 - 10:30-12:00

Passive and Active of Instabilities	Control	Room Helmholtz		Tools & Met Developmer	hods it	Room Rayleigh
STC 30		10:30-11:00		STC 52		10:30-11:00
Thermoacoustic Stabilization in a Sequential Combustor at Elevated Pressure using Nanosecond Repetitively Pulsed Discharges			-	Thermoacoustic stability analysis and robust design of burner-deck-anchored flames in combustion systems using flame transfer function synthesis		
Dharmaputra, Reckin mans, Noiray	ger, Shche	rbanev, Schuer-		F. Ganji, Korr	nilov, van Oijen, Lop	ez Arteaga
Page 51 Abs	stract 🗞	Full-Text 🗹		Page 53	Abstract 🗞	Full-Text 🗹
STC 31		11:00-11:30		STC 53		11:00-11:30
Shape Sensitivities for Thermoacoustic Stability of Annular Combustors			-	A comprehe swirling jets	nsive linearised fl	ow model for
Ekici, Juniper				Varillon, Kais	er, Brokof, Oberleit	nner, Polifke
Page 52 Abs	stract 🗞	Full-Text 🗹	-	Page 68	Abstract 🗞	Full-Text 🗹
STC 32		11:30-12:00		STC 54		11:30-12:00
A modified Helmholtz resonator combined with membrane			Comprehens intrinsic mo with a gener	sive tracking of ac des for thermoacc al flame model	oustic and oustic systems	
Yang, Yu, Zhu			_	Orchini, Cron	qvist, von Saldern, I	Humbert, Moeck
Page 72 Abs	stract 🗞	Full-Text 🗹		Page 60	Abstract 🗞	Full-Text 🗹

Tuesday 12/09/2023 - 13:00-14:00

Invited Speaker

Room Helmholtz

Prof. Dr. Matthew Juniper

Adjoint-accelerated Bayesian Inference and Bayesian Experimental Design

Bayesian Inference provides a probabilistic framework to penalize physical models that (i) do not fit data or (ii) fit data but require excessively delicate tuning. Although Bayesian Inference is usually prohibitively expensive, it becomes cheap if all probability distributions are Gaussian. This is because posterior probability distributions can be found with an efficient combination of gradient-based optimization, Laplace's method, and adjoint methods. I will outline Bayesian inference, Laplace's method, and Bayesian experimental design, and show how they are accelerated with adjoint methods. I will demonstrate this with model selection in thermoacoustics, assimilation of 3D Flow-MRI data, and Bayesian identification of nonlinear dynamics.

Bio 🗞

Tuesday 12/09/2023 - 14:30-19:00

Passive and Act of Instabilities	tive Control	Room Helmholtz	Tools & Meth Development	ods	Room Rayleigh
STC 33		14:30-15:00	STC 55		14:30-15:00
Modal coupling and mode degeneracy in annular combustor with multiple Helmholtz resonators			Reconstructi from Two Sej Flame	Reconstruction of Downstream Acoustics from Two Separate SISO Measurements of Flame	
Yin, Dong			F. Ganji, Korni	lov, van Oijen, Lop	ez Arteaga
Page 72	Abstract 🗞	Full-Text 🖸	Page 54	Abstract 🗞	Full-Text 🗹
STC 34		15:00-15:30	STC 56		15:00-15:30
Effect of nanosecond repetitively pulsed discharges on the transfer function of premixed methane-air swirl flames at elevated pressure		Investigating fuel mixtures transfer func	the influence of on the assessme tion	hydrogen-rich ent of the flame	
Aravind, Yu, Laco	oste		zur Nedden, F	Paschereit, Orchini	
Page 45	Abstract 🗞	Full-Text 🗹	Page 73	Abstract 🗞	Full-Text 🗹

15:30-19:00

Factory Tours: Ansaldo, Kistler, CAPS

Focus on Combustion LaVision's Optical Measurement Solutions

- Tomographic LIF Imaging in Flames
- Tomographic Background Oriented Schlieren (BOS)
- Stray Light-free Laser Imaging
- High-speed Intensifier with Ultra-Fast Shutter
- Endoscopic Imaging
- Thermographic PIV
- Raman and Rayleigh Imaging

LaVision GmbH Anna-Vandenhoeck-Ring 19

37081 Göttingen/Germany

Phone: +49 (0) 551 9004 0 E-mail: sales@LaVision.com www.LaVision.com

Wednesday 13/09/2023 - 9:00-10:00

Invited Speaker

Room Helmholtz

Dr. André Fischer

Thermoacoustics in aero engines – a Rolls-Royce perspective

The talk aims to provide an overview of thermoacoustics in aero engines. It will cover the basic principles of thermoacoustics and emphasise the role it plays from engine design to engine operation. Thermoacoustics has gained significant importance in the aerospace industry due to its impact on engine performance and safety. The talk will discuss the challenges associated with implementing solutions in this field, including the need for accurate experimental measurements and the development of reliable numerical methods. By overcoming these challenges, researchers and engineers can effectively mitigate adverse effects and improve the overall performance of future modern aero engines.

Bio 🗞

Wednesday 13/09/2023 - 10:30-12:00

Room Rayleigh		
10:30-11:00		
A flame describing function mapping of the operating domain of an annular combustor and instability prediction		
ndel		
🗞 Full-Text 🗹		
11:00-11:30		
the OH* signal and spray flames:		
line Describing		
S Full-Text		
Sections Sections Full-Text ☑ 11:30-12:00		
Sectioning Section Instabilities		
Sesponse Behaviors tion Instabilities		

Wednesday 13/09/2023 - 13:00-14:00

Invited Speaker

Room Helmholtz

Prof. Dr. Deanna Lacoste

Combustion stabilization by non-thermal plasma

Energy conversion systems based on combustion are facing multiple challenges such as the arrival of new fuels, increasingly drastic pollutant regulations, and the pressure of extremely ambitious nationally determined contributions of the Paris Agreement. In this fast-evolving environment, perfect flame control is becoming both more important and more difficult. Combustion processes are sensitive to the chemical composition of the medium, the thermodynamic conditions, and the flow. By changing any of these, it is possible to modify the combustion rate and to control the flame. Non-thermal plasma produced by electric discharges have chemical, thermal and transport effects that can be used to stabilize combustion. In this talk, I will present recent progress in control of flame dynamics by non-thermal plasma produced by nanosecond repetitively pulsed discharges, with a special focus on high-pressure combustion and ammonia combustion.

Bio 🗞

Wednesday 13/09/2023 - 14:00-16:00

Machine Lear Intelligence a Methods	rning, Artificial Ind Data Driven	Room Helmholtz	
STC 17		14:00-14:30	
Flame transfer function shaping for robust thermoacoustic systems: Application to a kinematic flame model			
Reumschüsse Oberleithner, (el, Kroll, von Salde Orchini	ern, Paschereit,	
Page 63	Abstract 🗞	Full-Text 🗹	
STC 18		14:30-15:00	
Linear and nonlinear flame response prediction of turbulent flames using neural network models Tathawadekar Ösün Eder Silva Thuerey			
Page 67	Abstract 🗞	Full-Text 🗹	
STC 19		15:00-15:30	
Evaluation of thermo-acoustic quality indicator in the case of factorizable dispersion relation.			
dispersion re	ne case of factoriz lation.	zable	
dispersion re Kornilov, de G Page 57	ne case of factoria lation. oey Abstract %	Full-Text C	
Kornilov, de G Page 57	ne case of factoria lation. oey Abstract %	Full-Text 2 15:30-16:00	
A consistent of the second sec	ne case of factoria lation. oey Abstract & a assimilation of a ar premixed conic	Full-Text C 15:30-16:00 acoustically al flames	
A constant of the formation of the forma	ne case of factoria lation. oey Abstract & a assimilation of a ar premixed conic to, Cherubini, De F	Full-Text T5:30-16:00 acoustically al flames Palma, Juniper	

Nonlinear ar Phenomena	nd Stochastic	Room Rayleigh		
STC 24		14:00-14:30		
Noise in a Ri non-uniform	Noise in a Rijke tube with mean flow and a non-uniform temperature field			
Wei, Arabi, P	ralits, Bottaro, Heck	kl –		
Page 70	Abstract 🗞	Full-Text 🗹		
STC 25		14:30-15:00		
Characterization of combustion dynamics in a Trapped Vortex Combustor for various cavity sizings Singh Nair				
Page 66	Abstract 🗞	Full-Text 🗹		
STC 26		15:00-15:30		
Effect of colored noise on precursors of thermoacoustic instability in model gas turbine combustorsVishnoi, Gupta, Saurabh, KabirajPage 69Abstract SFull-Text I				
STC 27		15:30-16:00		
Flame describing functions of a real scale injection system for various operating pressures Bodoc, Garraud, Orain, Anthony, Gajan				
Page 46	Abstract 🏷	Full-Text 🖸		

Wednesday 13/09/2023 - 16:30-21:30

Physical Meo Response	chanisms, Flame	Room Helmholtz		
STC 42		16:30-17:00		
Numerical investigations of the effect of non-equilibrium plasma discharges on the dynamics of a sequential combustor				
Page 56	Abstract 🗞	Full-Text 🗹		
STC 43		17:00-17:30		
Effect of stratification on the combustion behavior and dynamic response of a bluff body-stabilized ammonia-hydrogen flame with radial staging Sampath, Moeck				
with radial st Sampath, Mo	z ed ammonia–hyd i t aging eck	rogen flame		
body-stabiliz with radial st Sampath, Mo Page 64	aging eck Abstract %	rogen flame Full-Text 🗹		
with radial st Sampath, Mo Page 64	aging eck Abstract %	Full-Text C		
with radial st Sampath, Mo Page 64 STC 44 Investigation combustion single swirl to Xu, Zheng, Xi	eck Abstract & on a frequency d instability in a lead burner	Full-Text Ti:30-18:00 rop of n premixed		

Stability Analysis and	Room
Uncertainty Quantification	Rayleigh
STC 47	16:30-17:00

Systematic modulation of the FTF and its effect on thermoacoustic stability

Æsøy, Moeck, Dawson				
Page 43	Abstract 🗞	Full-Text 🗹		
STC 48		17:00-17:30		
Acoustic analysis and stability map in an				

aerial combustor for take-off and cruise conditions

Nosrati,	Elkaei,	Pourfarzanel	n, Barjesteh,
Zadsirjan			
Page 60		Abstract 🗞	Full-Text 🗹

Dozentenfoyer K-Floor

18:30-21:30

Banquet Dinner

Systeme AG

SICHERE, ANSPRUCHSVOLLE UND KOMPLEXE AUTOMATIONSLÖSUNGEN

INDUSTRIE- & PROZESSAUTOMATION, SICHERHEITSSYSTEME, SCHALTSCHRANK- & STEUERUNGSBAU

POLYTECH SYSTEME AG

Hübelacherstrasse 15 | CH-5242 Lupfig +41 56 464 00 20 www.polytech.ch | info@polytech.ch

Polytech Systeme AG is Siemens Solution Partner -Automation Drives in Factory Automation

As experts for automation and drive technology as well as innovative digital technologies and systems, we reliably implement your requirements. Based on the Siemens product and system portfolio, we jointly create the foundations for your future success.

As a Siemens Solution Partner, we meet Siemens' high quality requirements and are pleased to be close to the manufacturer as a certified and qualified partner for automation and drive technology.

AUTOMATION - OVER 30 YEARS OF EXPERIENCE Holistic handling of industrial automation projects and the programming of large and complex programmes.

CONTROL ENGINEERING - EVERYTHING FROM A SINGLE SOURCE

With in-house control construction, interfaces are kept to a minimum and responsibilities are regulated.

We would like to thank ETH Zurich for the good cooperation and wish them every success for SoTiC 2023.

Thursday 14/09/2023 - 9:00-10:00

Invited Speaker

Room Helmholtz

Dr. Fei Han

Combustion Dynamics Research at GE Research

GE Research is at a unique position where researchers work on both gas turbine can-annular combustors and on aircraft engine annular combustors. This talk overviews both the experimental and modeling capabilities at GE Research that have been developed in handling combustion dynamics in both types of combustors. Several examples of fundamental research on combustion dynamics will be highlighted. These include the effect of flame – flame interactions on flame transfer functions, the fundamental thermoacoustic behaviors and mitigation of combustion dynamics in can-annular combustors, and thermoacoustics of an annular combustor. Challenges and future research needs will also be provided.

Bio 🗞

Thursday 14/09/2023 - 10:30-12:00

Dynamics of Spray and	Room
Autoignition Flames	Helmholtz
STC 8	10:30-11:00

Identification of the dynamics of a turbulent spray flame at high pressure

Eder, Fischer, Lahiri, Merk, Staufer, Eggels, Silva, Polifke

Page 52	Abstract 🗞	Full-Text 🗗
STC 9		11:00-11:30
Effect of the equivalence swirl-stabiliz acoustic mod Alhaffar, Pata	fuel composition ratio on the dyna ed spray flames t de t, Blaisot, Domingu	and the mics of o a transverse les, Baillot
Page 44	Abstract 🗞	Full-Text 🗹
STC 10 The effect of stability of at	second stage H2	11:30-12:00 addition on the

Ånestad, Sampath, Moeck, Worth

Page 45	Abstract 🗞	Full-Text 🗹

Stability Analysis andRoomUncertainty QuantificationRayleight		
STC 49		10:30-11:00
Early Detection Liquid Rocket E Statistical, Recu for Sub- and Su Conditions Martin, Börner, A	of Combustion Engines: Asses urrence, and Fr percritical Pres	Instabilities in sment of actal Analyses ssure di, Oschwald
Page 59	Abstract 🗞	Full-Text 🗹
STC 50		11:00-11:30
Robustness and frame-based mo	d Reliability of a contract of	state-space, rmoacoustics quel, Nicoud
Page 49	Abstract 🗞	Full-Text 🗹

STC 5111:30-12:00Validation of a combined optic-acoustic
probe on hydrogen flames using an
atmospheric lean premix pilot burner

Paulitsch, Giuliani, Hofer

Page 61	Abstract 🗞	Full-Text 🗹

Detailed Session Schedule

Thursday 14/09/2023 - 13:00-14:00

Invited Speaker

Room Helmholtz

Prof. Dr. Kyu Tae Kim

Thermoacoustic interactions in an axially-staged lean-premixed combustor

The transition from non-premixed to lean-premixed combustion systems has proven central to achieving higher combined cycle efficiency, without increasing NOx emissions. According to thermodynamic analyses, the development of more efficient gas turbine engines with higher than 65% net efficiency necessitates turbine inlet temperatures of 2000 K, at which point conventional architectures are unable to meet stringent NOx emission requirements. This chemical kinetics-related fundamental limitation can be circumvented by means of axial fuel staging strategies. The main purpose of the present investigation is to understand how an axial fuel-staged system behaves in a complex thermoacoustic environment, in comparison with single injection non-staged conditions.

Bio 🗞

Thursday 14/09/2023 - 14:00-15:30

Generation, Propagation and Damping of Perturbations	Room Helmholtz	Tools & Meth Development	ods	Room Rayleigh
STC 11	14:00-14:30	STC 57		14:00-14:30
Numerical study of the linear a damping in an acoustically fore test rig with coupled cavities	nd non-linear ced cold-flow	Towards a Mo Reacting Flow	omentum Potenti ws	al Theory for
Marchal, Schmitt, Fougnie, Ducru	lix	Brokof, Varillo	n, Inoue, Polifke	
Page 58 Abstract %	Full-Text 🗹	Page 49	Abstract 🗞	Full-Text 🗹
STC 12	14:30-15:00	STC 58		14:30-15:00
Doak's Momentum Potential The to multi-component and reactive Theoretical formulation and LE application D'Aniello, Seo, Koob, Reinle Knobloch	eory extended ve flows - S data nardt, Hasse,	Assessing th known subsy factors: figur F. Ganji, Korni	e thermoacoustic rstems using stat e of merit lov, van Oijen, Lop	c quality of the bility quality bez Arteaga
Page 50 Abstract 🗞	Full-Text 🗹	Page 54	Abstract 🗞	Full-Text 🖸
STC 13	15:00-15:30	STC 59		15:00-15:30
Entropy wave transport in an ir model geometry using a linear framework	ndustry-like ized global	Development boundary cor	s of the time-dom ndition for combu	ain impedance stion problems
Suman, Xia, Sharkey, Verma, Kaiser	Oberleithner,	Roncen, Card	esa, Marchal	
Page 66 Abstract %	Full-Text 🗹	Page 63	Abstract 🗞	Full-Text 🖸

Room Helmholtz

15:30-16:30

Closing Note and Best Paper Award Ceremony

SCIENCE & ENGINEERING

Schuermans Science&Engineering provides scientific engineering consultancy services in the field of power and propulsion systems (aircraft, rocket and gas turbine industry). We are highly specialised in one specific field: combustion instabilities.

- Consultancy services and trouble shooting
- Combustion control and damping
- Thermoacoustic modelling and analysis
- Advanced methods for data analysis
- Design and analysis of pulsation probes

Twenty five years experience in stabilising combustors: it works.

https://schuermans.science

bruno@schuermans.science

Acharya, Vishal	Nonlinear Global Flame Response Behaviors for Triggering of Combustion
	Instabilities (STC 23)

Combustion instabilities result in large combustor acoustic amplitudes due to a feedback loop between exciting acoustic/hydrodynamic disturbances and flame response. This paper addresses the global heat release properties required for a seemingly stable combustor to exhibit bi-stable behavior; i.e., be destabilized by a large enough disturbance amplitude, commonly referred to as "triggering" in the combustion instability literature. This question has enormous practical significance; e.g., it has motivated a whole set of flight certification protocols for rocket engines, usually done by detonating explosive charges inside the combustion chamber. It is shown that a fifth order flame response model is required to capture these behaviors. Moreover, the third and fifth order non-linearity must satisfy very specific relationships in phase but not amplitude. While the analysis is quite general, we also present an example problem for an anchored, premixed flame to find the combination of control parameters where triggering is possible. The ultimate goal for the presented results is that it can be used to screen data-sets (such as from single nozzle flame characterization experiments) and identify parametric spaces where triggering tendencies are the highest.

Detailed Schedule %

Full-Text 🗹

Æsøy, EirikSystematic modulation of the FTF and its effect on thermoacoustic stability
(STC 47)Moeck, Jonas P.(STC 47)

We investigate the thermoacoustic response of a simple combustor where the flame Dawson, James R. response is varied systematically through modulations in the gain and phase of the flame transfer function. We demonstrate and quantify two methods to modify the flame transfer function in a systematic way: 1) The center of heat release rate is changed for a fixed volume flow rate and thermal power by varying the methane/hydrogen fraction of the fuel. 2) For a fixed fuel blend, the flame response is significantly modified by placing a set of cylinders upstream of the flame base. We show that these two methods enable us to independently modify important scales in the FTF and that by combining them, the FTF can be manipulated in a straightforward and systematic way. A Distributed Time Lag model is used to generalize and describe the FTF modifications in terms of the two convective time delays. The DTL model is implemented into a network model of the system, and results from a linear stability analysis are compared with measurements of self-excited instabilities. Changes to the growth rate are shown to be consistent with the experimentally observed limit cycle amplitudes when the time delay related to the modulations is varied. Modification to the gain extends the initial eigenvalue trajectory, whereas a change in the phase leads to a rotation. The overall effect on the growth rate depends on the initial location of the eigenvalue in the complex plane. The effect of an exceptional point on the eigenvalue trajectories is apparent.

Detailed Schedule %

Alanyalioglu, Cetin Ozan	Comparison of acoustic, optical, and heat release rate based flame transfer functions for a lean-burn injector under engine-like conditions (STC 38)
Reinhardt, Hanna	The determination of the flame transfer function plays a crucial role during the develop-
Fischer, André	ment phase of lean-burn injectors to predict the overall combustion system stability. The Bolls-Boyce SCARLET (SCaled Acoustics Big for Low Emissions Technology) allows
Lahiri, Claus	measurement of the flame response of real aero-engine injectors under realistic single-
Nicolai, Hendrik	acoustic measurements. While the purely acoustic measurement of the flame transfer
Hasse, Christian	to the complicated design of the rig, and following the standard practice in the literature leads to excessive deviations from the actual flame transfer function. In this work, we focus on acoustic network modeling and compressible large-eddy simulation (LES) of the SCARLET rig and analyze the differences between acoustical, optical, and HRR-based flame transfer functions. We show that HRR-based FTF from LES agrees well with the optical FTF from the experiment. The baseline acoustic post-processing method, when applied to both LES and experiments, yields different results. Using LES data and an acoustic network approach, we suggest that comparable results can be obtained if additional acoustic features of the rig are taken into account. We further discuss the underlying assumptions of each method, and applicability of the analytical flame transfer matrix derived from linearized Rankine-Hugoniot relations.
	Detailed Schedule 🗞 Full-Text 🗹
Alhaffar, Abdallah	Effect of the fuel composition and the equivalence ratio on the dynamics of
	curved extension and the equivalence ratio of the dynamics of
Patat, Clément	swirl-stabilized spray flames to a transverse acoustic mode (STC 9)
Patat, Clément Blaisot, Jean-Bernard	swirl-stabilized spray flames to a transverse acoustic mode (STC 9) Lean combustion technologies are prone to combustion instabilities in aircraft engines, which are fed with multi-component liquid fuels, among which Sustainable Aviation Fuels (SAE) produced from biomass are promising as drop-in alternative biofuels. A key issue
Patat, Clément Blaisot, Jean-Bernard Domingues, Eric	Swirl-stabilized spray flames to a transverse acoustic mode (STC 9) Lean combustion technologies are prone to combustion instabilities in aircraft engines, which are fed with multi-component liquid fuels, among which Sustainable Aviation Fuels (SAF) produced from biomass are promising as drop-in alternative biofuels. A key issue is the effect of the fuel composition, in particular due to the preferential evaporation of the different chemical species on flame dynamics. This work investigates the dynamics
Patat, Clément Blaisot, Jean-Bernard Domingues, Eric Baillot, Françoise	swirl-stabilized spray flames to a transverse acoustic mode (STC 9) Lean combustion technologies are prone to combustion instabilities in aircraft engines, which are fed with multi-component liquid fuels, among which Sustainable Aviation Fuels (SAF) produced from biomass are promising as drop-in alternative biofuels. A key issue is the effect of the fuel composition, in particular due to the preferential evaporation of the different chemical species, on flame dynamics. This work investigates the dynamics of a linear array of three swirl-stabilized spray/air flames fed with different fuel mixtures constituted of n-heptane and dodecane, placed at a pressure antinode of a controlled standing transverse acoustic field. Flame response is first analyzed within the framework of the Flame Describing Function (FDF) and the Rayleigh criterion. The results indicate that the potential of the system to drive instabilities increases with the proportion of n-heptane. An acoustic-induced longitudinal wave propagating along the flame front, captured with high-speed OH* imaging, shows a large dependency on the fuel mixture. Results obtained are consistent with the global flame analysis performed within the FDF framework. The equivalence ratio appears as an essential quantity when analyzing flame dynamics for various mixtures. The two-component fuel spray is analyzed utilizing PDPA (Phase Doppler Particle Analyzer) system. The results reveal that the modification of the evaporation process, when the fuel mixture is changed, would be the main factor explaining the modification of the flame response.

A

Ånestad, Aksel	The effect of second stage H2 addition on the stability of an axially staged
Sampath, Ramgopal	can combustor (STC 10)
Moeck, Jonas Worth, Nicholas A.	An investigation of flame structure and stability was conducted in a two-stage combustor operated with CH4 and H2 fuel blends. To characterise the thermoacoustic stability of the first CH4 flame, a bifurcation experiment was conducted in which the equivalence ratio was varied, with constant bulk velocity. This led to the selection of 0.75 and 0.8 as a stable and unstable test case, respectively. A secondary flame zone was then created by injecting premixed air and CH4-H2 mixtures through opposing radial jets downstream of the main flame, with a constant equivalence ratio 0.8. OH* imaging was used to examine a range of secondary flame structures, across a broad range of bulk velocities H2 power fractions. Further bifurcation experiments were conducted by varying the jet velocity, while the main flame condition remained unchanged, showing that the system stability could be altered to either encourage or prevent instabilities. Pressure and PMT data were used to analyse the oscillation cycle for Phi=0.8. Mode suppression was shown for a range of bulk velocity and H2 content where the jet and main flames oscillate in antiphase. Phase averaged dynamics were then analysed at select velocities revealing a transition from dynamics dominated by jet flapping/puffing to flame collisions and merging as the jet-to-crossflow momentum flux ratio increased, causing the jet flames to interact strongly. The addition of H2 decreased the delay of the jet HRR oscillations by shortening it. As a result, mode suppression occured at lower velocity, with a less pronounced effect on the limit-cycle amplitude.
	Detailed Schedule 🗞 Full-Text 🗹
Aravind, Balakrishnan	Detailed Schedule Schedule Full-Text I Effect of nanosecond repetitively pulsed discharges on the transfer function of premixed methane-air swirl flames at elevated pressure (STC 34)
Aravind, Balakrishnan Yu, Liang	Detailed Schedule S Full-Text I Effect of nanosecond repetitively pulsed discharges on the transfer function of premixed methane-air swirl flames at elevated pressure (STC 34) An experimental investigation on the effect of nanosecond repetitively pulsed (NRP)

Detailed Schedule %

Blondé, Audrey	Experiments on the effect of cross-talk geometry on the whistling phe-	
Schuermans, Bruno	nomenon in a two-can system (STC 1)	
Noiray, Nicolas	This paper deals with an experimental investigation of the acoustic interaction between two neighbouring combustor cans in a mock-up configuration. The experimental set up is a strong abstraction of an actual combustor configuration but it was designed to reproduce the essential features to study the acoustic and hydrodynamic can-to-can coupling as observed in can-annular gas turbines. It consists of two separate straight channels with an anechoic termination on the upstream and choked conditions on the downstream sides by means of vanes that represent the first turbine stage. Right before the vanes, the two channels are connected via a small gap, the so called cross-talk area, to allow for acoustic communication between the two cans. While conducting non-reactive experiments with pressurized air, an intense whistling is observed. The whistling frequency and amplitude depend on the cross-talk area and geometry. The frequency of oscillations scales well with a Strouhal number based on the cross-talk distance, which suggests a hydrodynamic nature of the modes. The investigation of the probability densities of the pulsation time traces shows a bifurcation from linearly stable stochastically driven oscillations to linearly unstable stochastically perturbed limit cycle amplitudes. This work highlights the possible presence of shear layer flapping at the cross-talk in can-annular combustors. The range of frequencies and amplitudes of this phenomenon overlaps with typical frequency and amplitudes of thermoacoustic modes observed in gas turbine combustors. Hence these pulsations can be coinciding with thermoacoustic modes or mistakenly be interpreted for thermoacoustic modes in practical combustors.	
	Detailed Schedule 🗞 Full-Text 🗹	
Bodoc, Virginel	Flame describing functions of a real scale injection system for various	
Garraud, Julien	operating pressures (STC 27)	
Orain, Mikael	The flame response of a real scale aeronautical injector burner is explored experimentally through the use of describing functions that depend on the forcing level and/or the forcing	
Anthony, Desclaux	frequency. In these experiments the flame is forced by a siren connected to the combustor	
Gajan, Pierre	on the tresh gas reeding line. The experimental setup is equipped with two microphones placed on waveguides connected to the combustor air feeding tube and a photomultiplier equipped with an OH* filter used to measure the heat release rate fluctuations. The describing functions between the photomultiplier signal and velocity reference signal are analyzed for 1, 3 and 5 bars operating pressures and for two tested fuels: Jet A1 and Alcohol To Jet.	

В

Reliability and Consistency Test rigs for any application

Since 1989, Tresch + Kieliger provides customized solutions in the machinery sector for customers worldwide. Our main focus lies in the development of test rigs in the field of combustion, acoustic, aero and component testing.

Rig Development

Pressure vessels are usually designed according to the AD2000 or ASME norm. Some of the services we provide are:

- Feasibility studies
- Concept gathering and design phase
- Production readiness phase
- Manufacturing and procurement
- Assembly and commissioning

Cell Infrastructure

Customised piping and instrumentation are important to any rig infrastructure. We are also providing specialized subsystems, for instance back pressure valves with the following peak specifications:

- 2500 K gas inlet temperature
- 80 kg/s mass flow
- 40 bar combustion pressure

By developing in fields of innovative technologies such as a new generation of high-temperature heat storage, CO2to-fuel processes or SOEC fuel cells, we are actively contributing to a more sustainable future. If you require further information, do not hesitate to contact us.

THINK KNOW EXECUTE.

www.tke.ch info@tke.ch +41 62 769 71 80 Tresch + Kieliger GmbH Binzenholzstrasse 20 CH-5704 Egliswil

Bonnaire, Philip	Contribution of Shear Layer Dynamic	es to Thermoacoustic Instabilities for a
Panek, Lukasz	Reacting Jet in Cross-flow (STC 35)	
Polifke, Wolfgang	This paper examines the conditions under jet in cross-flow operating at fully premixe oscillations in the high-frequency range. The flow structures of the jet can serve as feedback cycle. The jet in cross-flow show potentially interact with the acoustic freque how precisely the relevant flow regions, su resolved in the numerical simulation. It is the in the hydrodynamic field and with which pa- with a jet-to-cross-flow density ratio of 3.22 feedback, a Fourier analysis of the jet she increasing momentum flux ratio, the broad When translating the operating points to a shear layer structures interact with the therm frequency range. If the momentum flux ratio jets increases, while the amplitudes of press	which a combustion system with a reacting ed, lean conditions exhibits thermoacoustic he objective is to explore the hypothesis that a possible amplifier for the thermoacoustic ws a multitude of vortex structures that can ency. For this purpose, it is first investigated uch as shear and boundary layers, must be en examined if there are preferred frequencies arameters they scale. For reacting test cases 9 in an environment without thermoacoustic ar layer shows a broadband spectrum. With band distribution shifts to higher frequencies. generic axial stage combustor geometry, the noacoustic feedback loop close to their natural tio is increased, the natural frequency of the ssure fluctuations decrease.
	Detailed Schedule 🗞	Full-Text 🗹
Bourny, Quentin	A reduced-order model for the contr	rol of thermoacoustic instabilities in a
Sarotte, Camille	dump combustor (STC 29)	
Genot, Aurelien	Combustion instabilities may develop, due change as a step, which causes flame wrink	to the formation of vortices at a geometrical
Theilliol, Didier	the literature, low-order models for pressure in which the oscillations are induced by the acoustics. These models have a nonlinear a complex frequency spectrum. In order to instabilities using these models, they shoul However, writing these models under a stat formulation as kicked oscillators. For this re- the model to its most simplified form: con combustor acoustic and the convection of v than a stochastic one as proposed by som this paper is to propose a reduced-order mo- is suitable for control. This model is compa- and we find satisfactory results: similar spe- operating conditions. This degree of simila to develop a model-based control methodo	and velocity oscillations have been proposed, coupling between the flame wrinkling and the dynamics (kicked oscillator, limit cycle) with o control the development of thermoacoustic ld be written as a state-space representation. re-space representation is difficult due to their eason, the objective of this paper is to reduce usidering a one-way interaction between the ortices, adopting a deterministic model rather e previous authors. The main contribution of odel, derived from pre-existing models, which red to the Nair and Sujith model in this paper ectrum, close amplitude prediction for various urity between the models is sufficient in order plogy.

Detailed Schedule %

Brokof, Philipp	Towards a Momentum Potential Theory for Reacting Flows (STC 57)	
Varillon, Grégoire Inoue, Yasuhiko Polifke, Wolfgang	Mutual coupling of (thermofluiddynamic) modes of perturbations can affect the thermo- acoustic stability of combustors and contribute to combustion noise. For example, vortical or entropic perturbations can be transferred to acoustic perturbations if accelerated by the mean flow. The decomposition of perturbation fields into the respective modes and a linear description of their interactions in terms of fluctuating primitive variables is challenging. In contrast, Doak's Momentum Potential Theory (MPT) promises an unambiguous decomposition in terms of momentum fluctuations, which is not limited to the linear regime. In the present study, the MPT is extended to study mode conversions relevant to combustion noise. Whereas classical MPT takes into account hydrodynamic, acoustic and entropic modes in unconfined flows, the investigation of noise generation in combustion chambers requires the extension of the MPT to capture modes linked to the fluctuation of species mass fractions ("species mode") arising from the change in chemical composition due to the reaction. Furthermore, a rigorous treatment of boundary conditions due to the confinement of the flow inside the combustor is required. The herein presented extension to reacting flows consists of two steps, (i) the formulation of a potential for momentum fluctuations related to species modes and (ii) identification of the enthalpy fluctuation related to species modes. The usefulness of the extended theory is explored by its application to post-processing of computational fluid dynamic simulation data of the propagation of entropy and species perturbations through one-dimensional ducts, nozzles and premixed flames.	
Cances, Mathieu	Robustness and Reliability of state-space, frame-based modeling for Ther-	
Giraud, Luc	moacoustics (STC 50)	
Bauerheim, Michael	This study is built upon the state-space formalism and the frame modal expansion introduced for thermo-acoustics in Laurent et al., Comb. and Flame, 206, (2019) and	
Gicquel, Laurent	extended to complex geometries by Laurent, Badhe and Nicoud, J. of Comp. Physics, 428 (2021). The low-order modeling based on this frame model expansion is prope to	
Nicoud, Franck	several numerical issues, particularly with the emergence of non-physical components in the output. A methodology based on the singular value decomposition is proposed to identify the sources of the spurious modes, and remove them. By preventing any interaction between the physical and non-physical components in the outcome, the proposed methodology drastically improves the robustness and reliability of the frame- based low-order modeling for thermoacoustics.	

Detailed Schedule 🗞

Candel, Sébastien	Key factors in combustion instability analysis of annular systems (IS)
Latour, Véranika	A considerable effort has been made in recent years to analyze combustion instabilities
Durox, Daniel	in annular systems, a geometry that is commonly used in aeroengines and gas turbines. Much insight has been gained from experiments and from analytical developments
Renaud, Antoine	accompanied by numerical simulations. This effort will be reviewed to examine the state of knowledge and identify the issues that need further consideration. A theoretical framework relying on an acoustic energy balance is also derived that can be used to analyze some of the key factors and estimate the growth rate of instabilities coupled by azimuthal modes. The focus of this analysis will be placed on the role of injection unit dynamics, acoustic energy balance in the combustion system, flame response, and its representation in terms of flame describing functions. An understanding of the interplay between these different items may be used to guide efforts aimed at predicting domains of instability and at reducing or suppressing self-sustained oscillations. Application of the theoretical framework is illustrated by an analysis of the acoustic power flow in injection units and by investigations of azimuthal instabilities in a laboratory scale annular combustor.
	Detailed Schedule % Full-Text 🗹
D'Aniello, Raffaele	Doak's Momentum Potential Theory extended to multi-component and reac-
Seo, Bonggyun	tive flows - Theoretical formulation and LES data application (STC 12)
Koob, Philipp	This paper presents an application of Doak's "Momentum Potential Theory of Energy Flux
Reinhardt, Hanna	carried by Momentum Eluctuations" extended for analyzing multi-chemical-component
	carried by Momentum Fluctuations", extended for analyzing multi-chemical-component and reactive flows. New components, related to the dynamics of the mixtures, are su-
Hasse, Christian	carried by Momentum Fluctuations", extended for analyzing multi-chemical-component and reactive flows. New components, related to the dynamics of the mixtures, are su- perimposed to the canonical Doak's decomposition in turbulent, acoustic, and thermal momentum fluctuations. The extended model is used here to characterize the thermoa-
Hasse, Christian Knobloch, Karsten	carried by Momentum Fluctuations", extended for analyzing multi-chemical-component and reactive flows. New components, related to the dynamics of the mixtures, are su- perimposed to the canonical Doak's decomposition in turbulent, acoustic, and thermal momentum fluctuations. The extended model is used here to characterize the thermoa- coustic behavior of a bluff-body stabilized premixed flame, represented by Large Eddy Simulation data of the Volvo Test Rig. The main characteristics of the combustion noise are highlighted by combining the results obtained through the model with the Spectral Proper Orthogonal Decomposition.

Detailed Schedule 🗞

Dharmaputra, Bayu	Thermoacoustic Stabilization in a Sequential Combustor at Elevated Pres-
Reckinger, Pit	sure using Nanosecond Repetitively Pulsed Discharges (STC 30)
Shcherbanev, Sergey	This study demonstrates the stabilization of a sequential combustor operated at elevated pressure with Nanosecond Repetitively Pulsed Discharges (NRPD). A constant-pressure sequential combustor offers many advantages compared to a conventional combustor.
Schuermans, Bruno	including higher fuel flexibility and a wider operational range. However, thermoacoustic
Noiray, Nicolas	Instability remains a barrier to widening the operational range of the combustor. In the past decades, active and passive control strategies for gas turbine combustors have been studied. Passive control strategies have been more widely used in commercial systems due to their simplicity in terms of implementation. Active control strategies have seen less practical application, mainly due to the lack of robust actuators with sufficient control authority. In this study, we demonstrate the applicability of nanosecond repetitively pulsed discharges (NRPD) as actuators to stabilize a lab-scale sequential combustor operated at pressures ranging from one to three bars. We employ continuous forcing of NRPD to stabilize the sequential combustor in both stationary and transient cases. In the transient case, the combustor pressure is progressively increased from one to two bars while continuously applying the NRPD to stabilize the system. Additionally, we demonstrate that NRPD can access operating conditions with low NO emissions, which are only stable with NRPD.
	Detailed Schedule % Full-Text 🗹
Désor, Marcel	Influence of wall-to-wall radiative heat transfer on premixed flame dynamics
Eder, Alexander J.	(STC 39)
Silva, Camilo F.	The inclusion of conjugate heat transfer (CHT) in simulations of flame dynamics and
Polifke, Wolfgang	lished methods for setting thermal boundary conditions at the combustor walls. However, radiative heat transfer represents a significant challenge for CHT simulations. A comprehensive treatment of thermal radiation requires modeling of both gaseous and solid wall emission and absorption. Wall-to-wall radiative heat transfer in particular may reduce temperature gradients in solids or transport heat upstream of the flame, where it leads to elevated upstream wall temperatures and affects flame anchoring, quenching, and flow velocities. This paper investigates these effects in large eddy simulation of a swirl-stabilized, fully premixed, hydrogen-enriched methane flame. A parameter study on radiative properties of the solid walls is performed while keeping all other variables constant. The findings demonstrate that while neglecting radiation can lead to accurate mean flame predictions, wall-to-wall radiation strongly influences flame dynamics. Elevated wall temperatures in outer recirculation zones are responsible for more flame activity in those regions, promoting a higher flame response gain. Additionally, increased upstream preheating of the fuel/air mixture decreases convective time delays, impacting phase predictions. This mixture preheating is a combined effect of direct radiation onto the upstream wall materials and the stronger flame activity in the outer recirculation zone. Fortunately, large uncertainties in the radiative properties of the solid materials are permissible as the estimated flame dynamics is rather insensitive to the specific values of radiative properties.

Eder, Alexander J.	Identification of the dynamics of a turbulent spray flame at high pressure	
Fischer, André	(STC 8)	
Lahiri, Claus	The flame dynamics of a kerosene spray flame is investigated under realistic operating	
Merk, Moritz	fer function of a turbulent spray flame by applying system identification (SI) to time series	
Staufer, Max	in-house code PRECISE-UNS. The identified acoustic flame response is compared to	
Eggels, Ruud	experimental data from the Scaled Acoustic Rig for Low Emission Technology (SCARLET) using the multi-microphone method. The present work investigates the potential of the	
Silva, Camilo F.	LES/SI methodology as a predictive tool in the early design phase of an aircraft engine. In addition, the validity of the established calculation of the flame transfer matrix (FTM)	
Polifke, Wolfgang	and the Rankine-Hugoniot jump conditions to extract the flame transfer function from the FTM is analyzed with a low-order acoustic network model of SCARLET.	
	Detailed Schedule 🗞 Full-Text 🗹	
Ekici, Ekrem	Shape Sensitivities for Thermoacoustic Stability of Annular Combustors	-
Juniper, Matthew P.	(STC 31)	
	Modern gas turbine combustors are susceptible to oscillations caused by the interaction between sound waves and the flame. If the acoustic pressure is sufficiently in phase with the heat release rate, the oscillations can grow significantly, which may cause extra heat transfer, excessive noise, or even failure of the engine. We use the thermoacoustic Helmholtz equation to model this instability problem as an eigenvalue problem. The eigenfrequency and the growth rate of the system are obtained using a finite element based Helmholtz solver by defining the geometry and system parameters as well as by imposing the acoustic boundary conditions and fluctuating body forces. After calculating the eigenvalue and eigenvector of the problem, we use adjoint methods to calculate the sensitivity of the eigenvalue to changes in the shapes of the surfaces of the combustor geometry. We demonstrate the application of this procedure to an example annular com- bustor with dilution holes for two different eigenmodes. The computed shape sensitivity fields can guide design changes that will improve the stability of the combustor.	

F

F. Ganji, Hamed	Discussion on the limitations of the κ and μ criteria as figures of merit to
Kornilov, Viktor	evaluate the thermoacoustic quality of burners with flames (STC 28)
van Oijen, Jeroen	Thermoacoustic instability poses a significant challenge in combustion appliances due to the complex interaction between unsteady combustion, heat transfer, and acoustic
Lopez Arteaga, Ines	The complex interaction between unsteady combustion, near transier, and adoustic modes within the system. Accurately predicting system stability requires modeling all components, including the burner. Traditionally, the burner is represented as an acousti- cally active two-port block with passive upstream and downstream acoustic terminations. The dispersion relation of the thermoacoustic system is commonly used to anticipate eigen-frequencies and assess system stability. However, in practical scenarios, crucial information about the specific upstream and downstream terminations for burner integra- tion may be unavailable during the development phase. This raises an important question: How can the thermoacoustic performance of burners, along with their associated flames, be evaluated without specified upstream or downstream acoustics? This paper addresses this question by relooking at the concept of a figure of merit for burners with flames. One proposed approach is to consider the μ and κ factors from microwave theory as potential figures of merit for burners. However, this study demonstrates that limitations and invalid assumptions associated with the application of these factors in the context of thermoacoustics make them unsuitable as figures of merit for burners. While they can accurately predict the histogram of unstable frequencies, their use as figures of merit for burners is not recommended. By highlighting the drawbacks and limitations of the μ and κ factors, this research emphasizes the need for alternative methodologies to evaluate the thermoacoustic quality of burners and their associated flames when upstream or downstream acoustics are unspecified.
	Detailed Schedule % Full-Text 🗹
F. Ganji, Hamed	Thermoacoustic stability analysis and robust design of burner-deck-
Kornilov, Viktor	anchored flames in combustion systems using flame transfer function synthesis (STC 52)
van Oijen, Jeroen	Thermoacoustic instabilities in combustion systems are influenced by the thermoacoustic
Lopez Arteaga, Ines	properties, such as the transfer function (TF) of the burner with flame. One promis- ing approach to address these instabilities is by targeting the burner's thermoacoustic properties. One idea for modifying or designing the TF of a flame is based on the heuristic notion that the acoustic response of one flame can be compensated by the correspondingly tuned response of another flame. For premixed conical flames anchored on the burner deck, the TF depends on the diameter of the perforation and its flame

Detailed Schedule %

F

F. Ganji, Hamed	Reconstruction of Downstrea	m Acoustics from Two Separate SISO Mea-
Kornilov, Viktor	surements of Flame (STC 55)	
Kornilov, Viktor van Oijen, Jeroen Lopez Arteaga, Ines	This study presents a prospective m of components downstream of a flam (SISO) acoustic measurements. Tra- tion coefficient often encounters pra- ments or modeling in the high-tempe characterizing downstream acoustics the flame, making it difficult to indep changers apart from the combustion the dispersion relation in the theory application in thermoacoustic problet acoustics from two SISO acoustic transfer function (TF) technique, is e The second measurement involves a acoustic reflection test, conducted w proposed method is demonstrated of flame. The resulting downstream re the noise/uncertainty in the measure therefore require special treatment of ducted-flame model also confirmed laboratory test case. However, the sis the absence of flame) exhibited a go it can be inferred that the active part	hethod for evaluating the thermoacoustic properties he, utilizing two separate Single-Input-Single-Output ditional direct assessment of the downstream reflec- actical challenges due to the necessity of measure- rature downstream region of the system. Additionally, a typically requires incorporating the heat inflow from endently characterize components such as heat ex- segment. By leveraging the widely employed form of of radio-frequency circuits, which has recently found ins, an opportunity arises to reconstruct downstream ests. The first measurement, known as the flame extensively employed in the field of thermoacoustics. It a flame present from the upstream/cold side. The in a ducted premixed burner-stabilized Bunsen-type effection coefficients showed a strong sensitivity to red flame TF and input reflection coefficient, and data. Applying the current approach to a theoretical the presence of strong sensitivity observed in the raightforward reconstruction in the cold condition (in of correspondence with the analytical model. Hence, is of the combustion system causes this sensitivity.
F. Ganji, Hamed	Assessing the thermoacousti stability quality factors: figure	c quality of the known subsystems using of merit (STC 58)
Kornilov, Viktor	The sum of the second in the held it is a second sec	
van Oijen, Jeroen Lopez Arteaga, Ines	Thermoacoustic instability represer as it arises from intricate interaction acoustic modes within the system. A system acoustics reliably. Convention active two-port block, coupled with nations. However, evaluating the t only one side of the termination is merit for subsystems. This paper im stability (DCS) criterion in the freque with employing Monte Carlo (MC) sin Our findings highlight the potential employing this MC approach to ev- different burners. To address this is termed the stability quality factors (S quality factors as a more reliable figu- subsystems in thermoacoustic prob	Its a significant concern in combustion appliances, s between unsteady combustion, heat transfer, and ccurate modeling of all components is vital to predict inally, the burner is characterized as an acoustically passive upstream and downstream acoustic termi- nermoacoustic quality becomes challenging when specified, leading to the exploration of a figure of vestigates the application of the direct conservative tency domain to assess the limitations associated nulations for determining the probability of instability. for misinterpretation and misrepresentation when aluate and compare the thermoacoustic quality of ssue, we propose alternative performance metrics QF). Through our analysis, we establish the stability are of merit to replace the probability of instability for ems.
	Detailed Schedule 🗞	Full-Text 🖸

Giannotta, Alessandro	Bayesian data assimilation of flames (STC 20)	acoustically forced laminar premixed conical
Yoko, Matthew Cherubini, Stefania De Palma, Pietro Juniper, Matthew	We perform experiments on an acc assimilate experimental flame posit The experimental rig is a ducted c ethylene. A high-speed camera cap snapshots of the stable flame. We imposed velocity field. We use adjoi probable model parameters, given accurate model with quantified unc to quantities that weren't directly n which cannot be extracted reliably f	pustically-forced laminar premixed conical flame and ion data into a physics-based premixed flame mode onical flame supplied by a mixture of methane and tures the dynamics of the perturbed flame, as well a model the flame with a front-tracking solver with a nt-accelerated Bayesian inference to identify the mos the data. Through this, we create a quantitatively ertainty bounds. The trained model provides access neasured, such as the fluctuating heat release rate rom the flame emission alone.
	Detailed Schedule 🗞	Full-Text 🖸
Giraudi, Pietro Morgans, Aimee S.	An efficient computational mo non-premixed jet diffusion fla	del to estimate the flame transfer function o mes (STC 46)
Picciani, Mark A.	This work presents a new model for based on the advection- diffusion en- density and diffusivity effects. The m air flames across a range of powers existing model in predicting flame sh and diffusivity variations are more so between the flame length and the convective and diffusive forces in (FTFs) exhibited a low-pass filter b H2 – air reactions, emphasizing t These findings demonstrate the po- thermoacoustic instabilities in the m	r how diffusion flames respond to flow perturbations quation of the mixture fraction that considers variable nodel was validated and tested for CH4 – air and H2 and frequencies. The model outperformed the main hape, particularly in the case of H2 – air where densit significant. The findings indicate a strong correlation Peclet number, highlighting the balance between dictating flame behavior. Flame transfer functions ehavior, with distinct deviations noted especially for he unique combustion characteristics of hydroger tential of the new model for improving predictions of ext-generation hydrogen combustors.
	Detailed Schedule 🗞	Full-Text 🖸

G

Gopalakrishnan, Harish	Prediction of autoignition-stabilized flame dynamics in a backward-facing step reheat combustor configuration (STC 45)
Heggset, Tarjei	Hydrogen compustion in a sequential compustor with a propagation-stabilized flame in
Gruber, Andrea	the first stage and an autoignition-stabilized flame in the second reheat stage offers fuel flexible and efficient power generation with minimal greenhouse gas emissions. However
Bothien, Mirko	unsteady thermoacoustic phenomena driven by the interactions between the flame dy-
Moeck, Jonas	pressure oscillations. A key component required to understand and predict thermoacous- tic oscillations in reheat combustors is the knowledge of the response of autoignition front to unsteady acoustic and convective disturbances. In this paper, we extend a simplified particle based framework, originally proposed for a one-dimensional combustor configu- ration, to a two-dimensional backward-facing step geometry. The present particle based framework treats the flow as a collection of independent Lagrangian fluid elements which evolve in time. The temperature evolution of each fluid particle is computed by integrating the momentum, energy and species mass balance equations for that particle in time. The unsteady heat release rate and instantaneous flame position are then computed by stitching together the particle evolution data. The predictions of the flame response framework are thereafter compared with fully compressible Large eddy simulations (LES) of a reheat flame forced by acoustic and entropy disturbances. The flame response predictions obtained from the present approach match well with the LES data, suggest- ing that the present particle based framework can be used to compute flame transfer functions of reheat flames and consequently give insight into the thermoacoustic stability characteristics of reheat combustors.
	Detailed Schedule % Full-Text
Impagnatiello, Matteo	Numerical investigations of the effect of non-equilibrium plasma discharges on the dynamics of a sequential combustor (STC 42)
Malé, Quentin	The effects of Nanosecond Repetitively Pulsed Discharges (NRPDs) on the dynamics of
Noiray, Nicolas	The elects of Nahosecond Repetitively Fused Discharges (NRP Ds) on the dynamics of the second stage of a sequential combustor are investigated numerically at atmospheric pressure using Large Eddy Simulation. The response of the sequential stage to an harmonic forcing at a frequency of 327 Hz is analyzed with and without the activation of NRPDs upstream of the main flame brush. 327 Hz corresponds to the frequency of a thermoacoustic instability that develops in the experimental rig, which is successfully stabilized via the application of plasma discharges. The discharges significantly affect the anchoring mechanism of the second stage flame. When NRPDs are off, the flame is aerodynamically anchored at the inlet of the combustor chamber and no auto-ignition events are observed upstream of the main flame brush. Conversely, when NRPDs are on, trains of ignition kernels are generated upstream of the main flame brush and interact with the latter in the combustion chamber. The integrated heat release signal loses its coherence with the acoustic forcing when plasma is active. The igniting kernels generated by plasma introduce heat release fluctuations that are out-of-phase compared to those produced by the main flame brush, thereby reducing the capability of the combustion to act as a source of acoustic energy. This work shed light on the mechanism enabling thermoacoustic instability suppression when discharges are applied: the change of the mean flame morphology induced by the discharges drastically decreases the fluctuating component of the heat release that participates to the instability.

Detailed Schedule 🗞

Kaiser, ThomasOn the significance of modeling turbulent transport when linearizing the
governing equations of a turbulent Bunsen flame (STC 41)

von Saldern, Jakob Linearizing the governing equations of reacting turbulent flows would allow to significantly enhance the understanding of thermoacoustic instabilities and provide new efficient Goldack, Miriam ways to control them. Driven by this goal, we linearize the governing equations of a Polifke, Wolfgang turbulent reacting Bunsen flame around its temporal mean, which is obtained by Large Eddy Simulations (LESs). LESs furthermore provide the flame response to harmonic Varillon, Gregoire acoustic actuation as reference solution to the linearized framework. The fluctuations of reaction rate in the linearized framework are modeled by a linearized Reynolds-averaged Zhang, Feichi Navier Stokes (RANS)-Eddy Break Up (EBU) flame model. This linearized flame model is tested in an a priori analysis, against the LES, showing very good agreement. However, Zirwes, Thorsten the results of an a posteriori analysis are less favourable: When this linearized flame model is applied in combination with the entire set of linearized governing equations, an Bockhorn, Henning acoustic actuation in the linearized framework yields coherent fluctuations in reaction rate, which qualitatively agree well with the LES. Quantitatively, however, the results Oberleithner, Kilian disagree, resulting in deviating Flame Transfer Functions (FTFs) of LES and the linearized approach. This study finds that one possible reason for the deviations is an inadequate modelling of turbulent transport. Finally, this study demonstrates using an a priori analysis, that for a correct description of the turbulent fluxes in the linearized framework, the effect of counter gradient diffusion needs to be accounted for.

Detailed Schedule %

Full-Text 🗹

Kornilov, Viktor Evaluation of thermo-acoustic quality indicator in the case of factorizable dispersion relation. (STC 19)

A class of burners with gaseous, premixed, aerodynamically or burner deck stabilized flames has the thermo-acoustic property of an "acoustic velocity sensitive source of acoustic velocity". For these flames, the transfer matrix has particular symmetries that enable the factorization of the dispersion relation used to find the eigen frequencies of the system. This allows the acoustic properties of the flame/burner termination to be gathered separately from the factor associated solely with the thermo-acoustic characteristics of the flame/burner. Accordingly, the factors can be studied separately. Particularly, Monte-Carlo method of sampling of the acoustic factor, considered as a mapping of two randomly taken passive reflection coefficients (of upstream and downstream), makes it possible to reveal the universal probability density field of the acoustic subsystem factor in its complex plane. Consequently, the identified features of the acoustic factor mapping provide an opportunity to test, evaluate and rank various burners in respect to their thermo-acoustic properties. The corresponding idea of how to evaluate the probability of burner instability is proposed and demonstrated on an illustrative example. The ultimate goal of this developed methodology is to provide a procedure for calculating the burner-with-flame thermo-acoustic figure of merit and therefore to rank different flames in respect to their thermo-acoustic quality. One of intriguing outcome of this study is that the thermo-acoustic eigen frequencies of many systems tend to be localized where the flame transfer function has a phase around $-\pi$, -3π ,... etc., and this universal property is not directly linked to the burner intrinsic instability mode.

Detailed Schedule %

A flame describing function mapping of the operating domain of an annular combustor and instability prediction (STC 21)	Α
	В
Models to predict combustion instabilities are of considerable importance at a stage where new architectures and alternative fuels are being proposed to tackle the environ-	C
need for improved reduced-order models that can be used to analyze the stability of combustion systems. These models usually rely on flame transfer or describing functions	D
(FTFs or FDFs) representing the flames' response to incoming disturbances. Recent measurements indicate that FDFs exhibit gain and phase variations with fuels, fuel	E
blends, injector characteristics but also with operating conditions. FDFs are generally documented for a few operating points, but a systematic database covering the domain	F
of operation of a combustion system is generally not available. The logical step taken in the present investigation is to collect the FDFs for a large number ($k = 30$) of operating	G
points of the laboratory-scale annular combustor MICCA-Spray. This is achieved using a single-injector system, SICCA-Spray, that allows external flame modulation. The col-	K
lected FDF data correspond to injectors of two types, characterized by different flame dynamics in MICCA-Spray. This FDF database, in combination with a stability analysis framework derived from accustic energy balance equations, serves to determine growth	L
rates and define a theoretical instability domain. A comparison with the stability maps obtained in the annular combustor indicates that the general layout of these maps can be	Μ
retrieved for the two injector types, validating the relevance of a data-driven model-based approach in the investigation of thermo-acoustic instabilities.	Ν
	0
Detailed Schedule % Full-Text 🗹	Ρ
Numerical study of the linear and non-linear damping in an acoustically	R
lorced cold-now test fig with coupled cavities (310 11)	S
Thermoacoustic instabilities within liquid rocket engines (LRE) result from a coupling between the dynamics of the injection, the combustion process and the acoustics of	Т
the propulsive system. Several combustion models exist accounting for the unsteady heat release rate under acoustic solicitation [Méry (2010)]. On the contrary, few studies	V
offer a precise analysis of the mechanisms underlying the acoustic damping processes. The NPCC setup, a three-injector cold-flow test rig mimicking the geometry of a LRE	W
[Gonzalez-Flesca (2016)], was designed in this purpose. Using a perforated wheel, the device can be efficiently forced at its eigenfrequencies. The competition between	X
forcing and damping lead to a limit-cycle for three chamber eigenmodes: 1T, 1T1L (which is coupled with the 1T mode of the dame) and 1T2L. The 1T mode triggers	Υ
strong non-linear harmonic response. Previous studies have shown that Large Eddy	
Simulation (LES) was able to retrieve the limit-cycle of all three eigenmodes [Marchal (2021)]. Lowering the forcing amplitude enables to remain in the linear acoustic regime. Disturbance energy budgets [Brear (2012)] are then used in the LES code to characterize the damping phenomena during chamber-only and coupled dome-chamber forcing. Using	

combustor and instability prediction (STC 21) Durox, Daniel Models to predict combustion instabilities are of considerable importance at a stage Renaud, Antoine where new architectures and alternative fuels are being proposed to tackle the environ Candel, Sébastien mental challenges the aviation industry is facing. Recent investigations highlight the need for improved reduced-order models that can be used to analyze the stability o combustion systems. These models usually rely on flame transfer or describing functions (FTFs or FDFs) representing the flames' response to incoming disturbances. Recen measurements indicate that FDFs exhibit gain and phase variations with fuels, fue blends, injector characteristics but also with operating conditions. FDFs are generally documented for a few operating points, but a systematic database covering the domain of operation of a combustion system is generally not available. The logical step taken ir the present investigation is to collect the FDFs for a large number (k = 30) of operating points of the laboratory-scale annular combustor MICCA-Spray. This is achieved using a single-injector system, SICCA-Spray, that allows external flame modulation. The col lected FDF data correspond to injectors of two types, characterized by different flame dynamics in MICCA-Spray. This FDF database, in combination with a stability analysis framework derived from acoustic energy balance equations, serves to determine growth rates and define a theoretical instability domain. A comparison with the stability maps obtained in the annular combustor indicates that the general layout of these maps can be retrieved for the two injector types, validating the relevance of a data-driven model-based approach in the investigation of thermo-acoustic instabilities. Detailed Schedule % Full-Text Marchal, David Numerical study of the linear and non-linear damping in an acoustically forced cold-flow test rig with coupled cavities (STC 11) Schmitt, Thomas Thermoacoustic instabilities within liquid rocket engines (LRE) result from a coupling Fougnie, Alexandre between the dynamics of the injection, the combustion process and the acoustics o Ducruix, Sébastien the propulsive system. Several combustion models exist accounting for the unsteady heat release rate under acoustic solicitation [Méry (2010)]. On the contrary, few studies offer a precise analysis of the mechanisms underlying the acoustic damping processes The NPCC setup, a three-injector cold-flow test rig mimicking the geometry of a LRE [Gonzalez-Flesca (2016)], was designed in this purpose. Using a perforated wheel the device can be efficiently forced at its eigenfrequencies. The competition betweer forcing and damping lead to a limit-cycle for three chamber eigenmodes: 1T, 1T1L (which is coupled with the 1T mode of the dome) and 1T2L. The 1T mode triggers strong non-linear harmonic response. Previous studies have shown that Large Eddy Simulation (LES) was able to retrieve the limit-cycle of all three eigenmodes [Marcha (2021)]. Lowering the forcing amplitude enables to remain in the linear acoustic regime Disturbance energy budgets [Brear (2012)] are then used in the LES code to characterize the damping phenomena during chamber-only and coupled dome-chamber forcing. Using the budget's fluxes, we retrieve the correct global damping of the system and extract the local damping contributions (jets, chamber, injectors, dome). Then, a non-linear term representing the energy transfer to the harmonics observed in the experiment is derived from non-linear acoustics theory. Finally, this model is tested on the NPCC rig and retrieves the limit-cycle amplitude of the 1T mode. Full-Text Detailed Schedule %

Latour, Véranika

Martin, Jan	Early Detection of Combus	tion Instabilities in Liquid Rocket Engines: As-
Börner, Michael	Supercritical Pressure Cor	ditions (STC 49)
Armbruster,		
Wolfgang	Safe shutdown of a liquid rocke	engine in ground testing prior to the onset of damaging
Hardi, Justin	to time and cost savings in engi	re development programs. Methods derived from statisti-
Oschwald, Michael	precursors in unsteady pressur turbine combustion experiments at low pressures. In the presen two cryogenic oxygen-natural ga previously reported; both sub- identify methods which can dis operation and are sufficiently re- in engine tests. Among the me the auto-correlation, the secon recurrence rate, the Hurstexpor moment, the Hurst-exponent, a have short detection delays for from instability with an appropri computation cost which makes The Hurst-exponent has the ac- test cases addressed, demonst combustion device or operating	e signals from canonical combustion experiments, gas- , and sub-scale rocket combustion experiments operated t work, several such methods were applied to data from as rocket experiments operated at higher pressures than nd supercritical with respect to oxygen. The goal was to cern limit-cycle instabilities from intermittently unstable sponsive to be applied as emergency shut-down criteria thods applied were the standard deviation, variance of d spectral moment, the ratio between determinism and nent, and the multifractal range. The second spectral nd a measure derived from the multifractal spectrum all instability onset and intermittency could be discerned ate choice of threshold value. They also have moderate them of interest for potential real-time implementation. Iditional advantage of a common threshold value for all rating its potential for broader application independent of conditions.
	Detailed Schedule %	Full-Text 🗹
Moriniere, Titouan	The relationship between the flames: consequences on	The OH* signal and the heat release rate for spray
Schuller, Thierry	names. consequences on	
	The relationship between fluctual a flame and fluctuations of the combustor. In fully premixed syste deduced from relative OH* is disturbances need also to be a Experiments at steady state constructions and relative and equivalence ratios to deduce an of heat release rate and equivalence ratios and relative of quasi-static disturbances. The regime, a fuel stiff and a disturbance of Function (FDF) between heat refis deduced in these three regimes fully premixed model has roug while the gain of the FDFs deduced several humps. The low-freque model does not match that pream of disturbed fuel injection model fuel injection fuel fuel fuel injection fuel fuel fuel fuel fuel fuel fuel fuel	ations of the OH* chemiluminescence signal emitted by heat release rate is studied in a laboratory swirl spray stems, relative heat release rate fluctuations can directly ntensity fluctuations. In spray flames, equivalence ratio considered as they affect the OH* chemiluminescence. nditions are conducted at different thermal powers and empirical scaling law linking OH* intensity as a function alence ratio. This relation is used to infer how the OH* heat release rate disturbances are interrelated in the limit ree limit cases are considered assuming a fully premixed rbed fuel injection system resulting from the acoustic fuel droplets in the air stream. The Flame Describing elease rate and velocity disturbances at the burner outlet nes for different perturbation levels. The FDF with the nly a constant gain over the frequency domain studied, ced with a stiff or a disturbed fuel injection system exhibit ency limit of the FDF deduced with the fully premixed dicted by theory., while the FDFs deduced with the stiff dels match it.
	Detailed Schedule 🗞	Full-Text 🗹

Μ

Nosrati, Somayeh	Acoustic analysis and stability map i	n an aerial combustor for take-off and
Elkaei, Abbas	cruise conditions (STC 48)	
Pourfarzaneh, Hossein	To study acoustic condition of an aerial of conditions, a theoretical model was used frequencies of oscillations and the susceptible	combustor, in a certain range of operating . This method leads to predictions for the ility to instabilities in which linear disturbances
Barjesteh, Mohammad Mehdi	grow exponentially in time. For the flame the steady rate. A convection time is assur acoustic velocity fluctuations to travel from	model the fuel is assumed to be injected in ned to characterize the required time for the the point of injection to the location of flame
Zadsirjan, Saeed Reza	front in the combustion chamber. By applyi components of combustor model, along w conditions, a system of equations can be using test conditions and numerical solution a related eigenvalue equation which has c these roots determines whether disturbance roots gives the frequency of the modes. Acco studied by using software. According to the of fuel and the change of flight conditions envelope and the stability conditions of the	ing proper boundary conditions between the ith the combustor inlet and outlet boundary obtained. The required data were obtained ns verification. This system of equations has omplex roots. The sign of imaginary part of ces grow or decay, and the real part of these pustic mode shapes of the combustor are also e tools, it is possible to examine the change (take off or cruise for example) in the flight combustion chamber.
	Detailed Schedule 🗞	Full-Text 🖸
Orchini, Alessandro	Comprehensive tracking of acoustic a	and intrinsic modes for thermoacoustic
Orchini, Alessandro Cronqvist, Frida	Comprehensive tracking of acoustic a systems with a general flame model	and intrinsic modes for thermoacoustic (STC 54)
Orchini, Alessandro Cronqvist, Frida von Saldern, Jakob G. R.	Comprehensive tracking of acoustic a systems with a general flame model. In a thermoacoustic feedback loop, the flame coupling strength between the acoustic field shown for an arbitrary flame model that the flame model	e gain parameter can be used to measure the Id and the flame response. In this study, it is thermoacoustic solutions in the zero-coupling
Orchini, Alessandro Cronqvist, Frida von Saldern, Jakob G. R. Humbert, Sylvain C.	Comprehensive tracking of acoustic a systems with a general flame model. In a thermoacoustic feedback loop, the flame coupling strength between the acoustic fiel shown for an arbitrary flame model that the flimit split into two distinct sets: modes of (if result was previously shown in a rigorous model).	and intrinsic modes for thermoacoustic (STC 54) e gain parameter can be used to measure the d and the flame response. In this study, it is thermoacoustic solutions in the zero-coupling i) acoustic and (ii) intrinsic (ITA) origin. This panner only for $n-\tau$ flame models, which are

Detailed Schedule %

Paulitsch, Nina	Validation of a combined optic-acou	stic probe on hydrogen flames using
Giuliani, Fabrice	an atmospheric lean premix pilot bur	ner (STC 51)
Hofer, Andrea	This paper reports on a dynamic optic-aco (RCP) and its validation on lean, premixed h test rig. Within the test campaign, the focu- including detection of ignition, of steady an back as well as of combustion instabilities a comprising a novel, additively manufactured swirl-stabilised hydrogen flame was operat levels in the low kW range. Two test rig co tension) were applied. The tests including the short combustor configuration. A high- amplitude was employed to modulate the im ates a strong, naturally induced combustion acoustic response of the hydrogen flame was fast-responding, optical sensors (broadban with an industrial dynamic pressure transduc campaign are presented and discussed in ment of optical and acoustic sensors allows avoid misinterpretation of dynamic pressure for use in gas turbines (high pressure, elev flames, but showed satisfactory and promis	ustic probe called Rayleigh Criterion Probe hydrogen flames obtained on an atmospheric us is put on monitoring the hydrogen flame d transient states monitoring, of flame flash- ind of thermo-acoustic forcing. A pilot burner d multi-point injector resulting in a premixed, ted at various equivalence ratios and power onfigurations (with/without exhaust pipe ex- thermo-acoustic forcing were produced on pressure siren adjustable in frequency and let combustion air flow. The extension gener- noscillation at around 160 Hz. The optic and as obtained by the RCP, which combines four d sensitive in the visible and infrared range) cer. All gathered data of the RCPs in the test detail in this paper. The combined arrange- to better understand the flame noise and to e signals. The RCP was originally developed ated temperature) for conventionally fuelled ing results applied on hydrogen flames.
	Detailed Schedule Se	Eull Toxt (
Pedergnana, Tiemo	Connecting can-annular acoustic mo	odes to their annular limits (STC 2)
Pedergnana, Tiemo Orchini, Alessandro	Connecting can-annular acoustic mo	tion is typically made between annular and
Pedergnana, Tiemo Orchini, Alessandro Moeck, Jonas	Connecting can-annular acoustic mo In the thermoacoustics literature, a distinc can-annular systems. However, most real-w these two extremes, but lie somewhere in be	tion is typically made between annular and vorld systems do not correspond to either of etween them. To better understand the sound
Pedergnana, Tiemo Orchini, Alessandro Moeck, Jonas Noiray, Nicolas	Connecting can-annular acoustic models In the thermoacoustics literature, a distinct can-annular systems. However, most real-we these two extremes, but lie somewhere in be field in this general case, we analyze the ac- combustion chamber. A variable geometry connecting the individual cans, whose size adjusted. We present two models: the first up on the Rayleigh conductivity and Bloch wave modes emerge from the longitudinal model zero. The second model uses a pressure for relation from the Helmholtz equation. These against finite element simulations of the H predicted by the models, the azimuthal model chamber as the gap is fully opened. Below at the can-annular and annular limits can be of orders. As a side result, we gain insights into in round cavities with periodic gratings.	tion is typically made between annular and vorld systems do not correspond to either of etween them. To better understand the sound coustic spectrum of an idealized can-annular v is considered where the length of the gap e determines the coupling strength, may be uses a perturbative modeling approach based to theory to describe how clusters of azimuthal s as the coupling strength is increased from field ansatz to directly obtain the dispersion se analytical calculations are validated then helmholtz equation, demonstrating that, as es perturb into the eigenmodes of an annular a certain frequency, all the modes in between classified by their axial and azimuthal mode o the emergence of whispering gallery modes

R

Reinhardt, Hanna	Towards the Prediction of Flame Trans LES-CAA with Compressible LES (ST	sfer Functions: Evaluation of a Hybrid
Alanyalıoğlu, Çetin Ozan	The prediction of flame transfer functions.	particularly in practically relevant systems.
Fischer, André	remains challenging and computationally der	manding. Numerical approaches are typically characterizations of industrial configurations
Lahiri, Claus	Conventionally, fully compressible numerica	al simulations are used that naturally include
Nicolai, Hendrik	compressible simulations can be computations.	tionally expensive. Therefore, a convenient
Hasse, Christian	This paper applies a runtime-coupled meth and Computational Aeroacoustics (CAA) to hybrid CFD- CAA method captures fluid flo low Mach CFD domain while allowing for a exchange of hydrodynamic and acoustic qu a bidirectional coupling and, by extension, system. In this work, the hybrid CFD-CAA is The flame transfer function (FTF) of the syst hybrid simulations. The results for both nur other and compared to the experimentally of for the numerical approaches is considered. high-fidelity CFD framework using LES with I to an industry relevant configuration. The aim thermoacoustic instabilities in a real gas-tur	a single-sector aero-engine combustor. This bow behavior and combustion dynamics (CFD) a single-sector aero-engine combustor. This bow behavior and combustion dynamics in a acoustic perturbations in the CAA. Runtime uantities between the two solvers allows for , a complete description of the combustion s applied in a high-fidelity LES configuration. stem is evaluated for both compressible and merical approaches are validated with each btained FTF. Finally, the computational effort This paper presents the first application of a bidirectional coupling with the acoustic solver n is to provide a roadmap toward investigating bine engine at reduced computational costs.
	Detailed Schedule 🗞	Full-Text 🖸
Ben. Yongzhi	Detailed Schedule %	Full-Text C
Ren, Yongzhi Wang, Qiuxiao	Detailed Schedule S	Full-Text C
Ren, Yongzhi Wang, Qiuxiao Xia, Xi	Detailed Schedule S Dynamics of vortex-flame interaction This study conducts an experimental analys in V-shaped swirl flames of a novel swirl com	Full-Text C in a novel swirl combustor (STC 37) is of the flame-vortex interaction mechanism ibustor, based on time-resolved simultaneous
Ren, Yongzhi Wang, Qiuxiao Xia, Xi Qi, Fei	Detailed Schedule S Dynamics of vortex-flame interaction This study conducts an experimental analys in V-shaped swirl flames of a novel swirl com- particle image velocimetry (PIV) and OH* cf with quantitative analysis of vortex using (SPOD). The V-shaped flame is studied in d blowout limit (LBO) and near the stoichiomet show a compact flame and higher flow spe speed and stronger thermal expansion effect flow interaction in the outer shear layer (OSI for both cases. Based on SPOD analysis and flame are found to be OVR and its harr SPOD-based reconstructed vortical field, qu through flame stretching is analyzed. A new case that a weak vortex would form through be separated into two parts, with the weak we thermal expansion effect and causing local of weak vortex.	Full-Text C in a novel swirl combustor (STC 37) is of the flame-vortex interaction mechanism bustor, based on time-resolved simultaneous memiluminescence measurements combined spectral proper orthogonal decomposition detail by focusing on two cases near the lean tric point, respectively. Time-averaged results ed for the richer case due to a larger flame t. Transient dynamics of quasi-periodic flame- L) is found to be dominant in HRR oscillation , the main coherent structures in both flow monics in OSL. Through phase-averaging of unititative analysis of flame-vortex interaction w type of OVR pattern is found in the richer vortex splitting from a strong vortex. It could ortex being continuously strengthened by the extinction to reduce HRR until it merges with

Reumschussel, Johann Moritz	Flame transfer function shaping for robust thermoacoustic systems: Application to a kinematic flame model (STC 17)	
Kroll, Paul-Florian	Thermoacoustic oscillations are a major challenge in gas turbine combustor design.	
von Saldern, Jakob G. R.	Data-driven methods can help to design combustors without requiring an understanding of the underlying physics. However, data-driven optimization is usually associated with a high number of tests and is therefore not practical for costly combustion processes.	
Paschereit, Christian Oliver	A methodology to assess thermoacoustic stability prior to full engine tests involves capturing the flame transfer function and combining it with a low-order acoustics model for chamber acoustics. In this paper we propose a data-driven optimization technique	
Oberleithner, Kilian	that modifies the flame transfer function. By combining it with a low-order acoustic model, the method allows to increase the thermoacoustic stability margin in an automated	
Orchini, Alessandro	the method allows to increase the thermoacoustic stability margin in an automated manner. The key feature of the methodology is that cost function evaluation and thus the stability assessment is performed only at targeted critical frequencies, which allows efficient data-driven optimization for costly processes. The methodology is demonstrated using a thermoacoustic model consisting of a Rijke tube acoustic model coupled with a G-equation solver to model flame dynamics. Two parameters of the flame model are used as degrees of freedom for the optimization routine. The method is shown to efficiently increase the stability margin of the system. It requires minimal experimental effort and is therefore found to be especially useful for experimental optimization of combustion systems.	
	is therefore found to be especially useful for experimental optimization of combustion systems.	
	is therefore found to be especially useful for experimental optimization of combustion systems. Detailed Schedule Schedule Full-Text	
Roncen, Rémi	Increase the stability margin of the system. It requires minimal experimental enormal enormation and is therefore found to be especially useful for experimental optimization of combustion systems. Detailed Schedule Schedule Full-Text Developments of the time-domain impedance boundary condition for com-	
Roncen, Rémi Cardesa, José I.	Increase the stability margin of the system. It requires minimal experimental enormal enormatic	

Detailed Schedule %

Rosenkranz, Jan-Andre	Network- and CFD/CAA-Modelling in Multi-Jet Combustors (STC 3)	of the High Frequency Flame Response
Neu, Jonas	Low order networks are widely used for	linear stability analysis of combustors in the low
Sattelmayer, Thomas	frequency limit. High frequency stability analysis, however, is limited to cost-intensive numerical or experimental methods, since derivation of analytical solutions is either cumbersome or impossible. The paper at hand provides a quasi two-port network model for the effective acoustic pressure and axial velocity normalised with the transverse acoustic field for cylindrical combustors. This network modelling approach includes transfer matrices of acoustic area jumps, ducts for longitudinal, standing and spinning transverse and mixed mode wave propagation. The purely acoustic transfer matrices are validated with a generic non-reactive experiment. On the basis of phase-locked OH* im- ages of an engine-similar multi-jet combustor with a forced T1 mode, a locally distributed flame response model is derived, which is reduced to a global flame transfer matrix. A correspondingly locally resolved convective flame response model is implemented in a numerical model in order to verify the provided theory by the comparison of the analytical and numerical flame transfer matrix for the high frequency regime.	
	Detailed Schedule 🗞	Full-Text 🗹
Sampath, Ramgopal	Effect of stratification on the com	bustion behavior and dynamic response
Moeck, Jonas	(STC 43)	nia-nydrogen flame with radial staging
	Ammonia and hydrogen form prospectivit is vital to study combustion characterists of the latter by tailoring the ammonia at this regard, the stratified laminar ammonia are investigated to study their dynamic staged burner is considered in this study outer tube) and a central bluff body for tube and (ii) inner tube-bluff body region air mixtures are supplied respectively. Upstream location of the inner tube, term with stratification, the flames are narrow NH 2 * regions increases towards a rin NH3-air . For the forced flames with at the OH* fluctuations are higher for free conditions. The forced flames accompared istribution towards richer ϕ NH3-air . For the less stratified flame region of NH2* and OH* with insignification.	e zero-carbon fuels for practical applications and tics and flame dynamics with the possible control and hydrogen mixtures through stratification. In onia-hydrogen flames stabilized on a bluff body response to the input acoustic forcing. A radially dy consisting of two concentric tubes (inner and ming annulus passages between (i) inner-outer is in which premixed hydrogen-air and ammonia- The stratification is controlled by varying the ned mixing length (L m). For the unforced flames wer and the spatial separation between OH* and cher equivalence ratio of NH 3 /air mixtures, ϕ a forcing amplitude of 4% of the mean velocity, quencies less than 100 Hz for any of the flame hy lobed spatial patterns in OH* and NH2* spatial form the phase-averaged images, the mechanism be the flame base oscillations in the dominant int flame base oscillations with stratification.
	Detailed Schedule 🗞	Full-Text 🗹

S

Shen, Yazhou	Machine Learning for predicting the flame describing function of CH4/H2	
Morgans, Aimee	laminar flames (STC 15)	
	As a promising strategy to mitigate carbon emissions, hydrogen enrichment of conven- tional fuels is gaining increasing interest, but leads to increased propensity to damaging thermoacoustic instability. This paper demonstrates the ability of machine learning al- gorithms to reliably predict a key flame behaviour relevant to thermoacoustic stability prediction - the flame's nonlinear response to upstream acoustic forcing. Using com- putational simulations of a laminar premixed flame, this is predicted as a function of equivalence ratio and hydrogen content, including extrapolating into new hydrogen con- tent regimes. The effect of algorithm choice, data structure, data size, and extrapolation distance on the performance of different machine learning models is investigated. It is found that a type of neural network known as the multi-layer perceptron (MLP) model outperforms the Gaussian process and random forest models in both interpolation and extrapolation tasks. A novel preprocessing strategy, involving extracting the time delay of the flame response (which can be deduced from geometry and flow parameters) prior to applying machine learning, is found to remarkably improve the accuracy of machine learning models, especially in extrapolation tasks. When the extrapolation into new hydro- gen content levels is strong enough, the MLP model no longer performs well. However, for small and intermediate extrapolation, the MLP model shows a commendable level of prediction, even with small data sets, fulfilling needs relevant to thermoacoustic stability prediction.	
	Detailed Schedule % Full-Text 🗹	
Singh, Samarjeet	Intermittency transition to azimuthal instability in a turbulent annular com-	
Bhavi, Ramesh S.	bustor (STC 7)	
R., Midhun P.	We experimentally study the transition from combustion noise to azimuthal thermoa- coustic instability in a laboratory-scale turbulent annular combustor. The combustor	
Bhaskaran,	has sixteen swirl-stabilized burners with continuous and spatially distributed combus-	
Anaswara	emission of the flame using two high-speed cameras and the acoustic pressure fluctua-	
Mishra, Pruthiraj	tions using eight pressure transducers. We report that the transition from combustion noise to azimuthal instability occurs through a mode-switching phenomenon where the	
Chaudhuri, Swetaprovo	combustor switches from longitudinal mode to azimuthal mode as the equivalence ratio is decreased. Throughout this progression, the combustor exhibits various dynamical	
Sujith, R. I.	behaviors, including intermittency, dual-mode instability, standing azimuthal instability, and beating azimuthal instability. These dynamical states are determined from eight pres- sure transducers by decomposing the acoustic pressure fluctuations into clockwise and counterclockwise waves, enabling a reconstruction of the amplitude of acoustic pressure fluctuations, nature angle, nodal line location, and spin ratio. The global heat release response was also assessed during different dynamical states to contrast their behavior at different non-dimensional time steps by taking the phase-averaged fluctuations of the heat release rate over the acoustic pressure cycle. A number of differences were observed in the flame behavior depending on the direction of pressure wave propagation, demonstrating characteristic counterclockwise (CCW) spinning, standing, and clockwise (CW) spinning heat release patterns. Our study provides insights into the mode-switching phenomenon present during the transition from longitudinal to azimuthal modes in the annular combustor.	

Detailed Schedule %

Singh, Ashutosh Narayan	Characterization of combustion for various cavity sizings (STC 2	dynamics in a Trapped Vortex Combustor 5)
Nair, Vineeth	Trapped vortex combustors are commonly used for flame stabilisation; however, acoustic instabilities can occur as the flow passes through cavities in the presence of combustion, leading to large-amplitude pressure fluctuations. Therefore, experiments were conducted in a laboratory scale trapped vortex combustor for various cavity sizes (L/D=0.75-2.65) by varying the cavity length (L). Unsteady pressure measurements reveal a bifurcation route of limit cycle \rightarrow period-2 \rightarrow quasiperiodicity \rightarrow Strange non-chaotic attractors \rightarrow chaos as L/D increases. We use nonlinear time-series analysis to describe these dynamic transitions in greater detail.	
	Detailed Schedule %	Full-Text 🗗
Suman, Ahsan Kabir	Entropy wave transport in an i	ndustry-like model geometry using a lin-
Xia, Yu	earized global framework (STC 1	3)
Sharkey, Patrick	This study investigates the transport ar	d diffusion of entropy waves in a industrial complex
Verma, Ishan	LES include a transport equation fo	r a passive scalar, which models entropy. The
Oberleithner, Kilian	fluctuations in the passive scalar (or averaged flame location via a harmor	entropy waves) are introduced at the temporally ically fluctuating source term. The advection and
Kaiser, Thomas Ludwig	diffusion of the fluctuations in passive scalar are investigated by time stepping the LES. Subsequently, the linear analysis of the entropy wave convection is conducted. The transport equation of the passive scalar is linearized around the temporal mean state, which is obtained by the LES, and transferred into frequency domain, which leads to a transport equation of passive scalar fluctuations (entropy waves). The dissipation of entropy waves via turbulent mixing is modeled using a turbulent diffusivity, which in this study is determined by a k-epsilon model. The linearized transport equation of the passive scalar is solved for the same frequencies, which are investigated in the LES, using the finite element approach. The results obtained by the LMFA are in very good agreement with the LES, which demonstrates that it is well suited to address the transport of entropy waves in real world combustors.	
	Detailed Schedule 🗞	Full-Text 🗹

Tathawadekar, Nilam	Linear and nonlinear flame response prediction of turbulent flames using	
Ösün, Alper	neural network models (STC 18)	
Eder, Alexander J.	Modeling the flame response of turbulent flames via data-driven approaches is chal	
Silva, Camilo F.	methods have shown good potential to infer laminar flames' linear and nonlinear flame	
Thuerey, Nils	response when externally forced with broadband signals. The present work extends those studies and analyses the ability of NN models to evaluate the linear and nonlinear flame response of turbulent flames. In the first part of this work, the NN is trained to evaluate and interpolate the linear flame response model when presented with data obtained at various thermal conditions. In the second part, the NN is trained to infer the nonlinear flame response model when presented with time series exhibiting sufficient large amplitudes. In both cases, the data is obtained from large eddy simulation (LES) of an academic combustor when acoustically forced by broadband signals.	
	Detailed Schedule % Full-Text 🗹	
Trotta, Luca	Linearized Navier-Stokes modelling of acoustic modes in a LOX/Methane	
Armbruster, Wolfgang	rocket thrust chamber (STC 4)	
Schneider, Dirk	are modelled with different approaches of increasing complexity. A sub-scale thrust chamber with 42 injectors tested with liquid oxygen and liquified natural gas at a pressure	
Hardi, Justin	of 63 bar is used as a test case. The assumption of chemical equilibrium in the combustion	
Börner, Michael	than 50% for transverse modes, and is thus inadequate for this application. The current	
Suslov, Dmitry	industrial state-of-the-art approach for the acoustic modelling of rocket combustion chambers is based on a combined CFD-CAA approach in which the acoustic field	
Traudt, Tobias	properties obtained from a RANS CFD simulation are radially averaged and the resulting 1D-profiles are used as input into an acoustic solver. This approach showed a significant	
Zandbergen, Barry	increase in eigenfrequency accuracy for the current test case. The best accuracy was achieved with a Linearized Navier-Stokes (LNS) solver including 3D acoustic property distributions obtained from a steady-state CFD solution which was interpolated onto the domain in the acoustic solver and includes the details of the strong stratification in properties due to the long cryogenic flames extending from the 42 injectors. This approach is able to achieve sub-5% eigenfrequency errors with an acceptable increase computational times. This makes the LNS approach using a mapped 3D CFD field of interest for the future of the rocket propulsion industry since it could allow for more accurate combustion instability predictions.	
	Detailed Schedule Son Full-Text	

Varillon, Gregoire	A comprehensive linearised flow model for swirling jets (STC 53)	
Kaiser, Thomas Ludwig Brokof, Philipp Oberleithner, Kilian Polifke, Wolfgang	Inflow perturbations are imposed on an axisymmetric, enclosed, turbulent, non-parallel, and compressible swirling flow, for which the swirler is modelled and included in the numerical analysis. Swirl fluctuations are non-negligible on this configuration representative of a swirl burner and to match analytical mode shapes of inertial waves on an inviscid uniform flow. The stability map presents two eigenvalues driving a modal amplification. The acoustic modes sustained in the mixing duct and the combustion chamber, respectively, coupled with the Kelvin-Helmholtz mechanism at the mixing duct exit and the acoustic-vorticity mode conversion process in the swirler, act as a frequency selection criterion. Finally, one of the optimal forcings is similar to an unsteady heat source in the combustion chamber, and the resulting optimal amplification mechanism is likely to be triggered in reacting flow with unsteady heat release rate.	
Vaysse, Nicolas	Experimental investigation of self-sustained thermoacoustic instabilities in	
Durox, Daniel	pure hydrogen swirling flames (STC 40)	
Vicquelin, Ronan	The replacement of hydrocarbon fuels in energy production and aeronautical applications by hydrogon raises issues linked to its enhanced reactivity, bread flammability limits	
Candel, Sébastien	and augmented burning velocity. Hydrogen flames may also feature specific sensitivity	
Renaud, Antoine	and augmented burning velocity. Hydrogen flames may also feature specific sensitivity to acoustic disturbances that may lead to combustion instabilities. This problem is examined in the present work in the case of a single flame formed by a swirling injection unit where hydrogen is injected in crossflow to enhance mixing to reduce hotspots. Self-sustained oscillations (SSOs) are observed using optical diagnostics and acoustic pressure measurements. It is shown that changes in flame shape during one oscillation cycle feature a periodic attachment and detachment of the flame from the injector, and aerodynamic disturbances enhancing flame wrinkling. The influence of thermal power and global equivalence ratio is investigated and it is shown that unstable oscillations arise when the system is operated in an intermediate thermal power regime where the flame alternates between lifted and attached configurations. Investigations of the effect of swirl number and recess of hydrogen injection with respect to the chamber backplane show that the unstable range is diminished when the recess takes large values and also when the swirl number is increased.	

Detailed Schedule 🗞

Vishnoi, Neha	Effect of colored noise on precursor	s of thermoacoustic instability in model
Gupta, Vikrant	gas turbine combustors (STC 26)	
Saurabh, Aditya	In this work, we analyze the noise-induced	response of a generalized Van der Pol oscilla-
Kabiraj, Lipika	we investigate the effects of noise color (or coherence factor and Hurst exponent prior model the correlated noise as an additive (correlation times, which mimics the combu- the coherence factor is a more reliable pre- the Hurst exponent increases with an incre exponent can only be employed as a prec- small, provided the minimum threshold var	r noise correlation time) and noise intensity on to Hopf bifurcation (subthreshold region). We Drnstein Uhlenbeck (OU) process with varying ustion noise in practical systems. We find that ecursor than the Hurst exponent. We find that rease in both noise color and intensity. Hurst ursor when both noise color and intensity are lue for its implementation is chosen carefully.
	Detailed Schedule %	Full-Text 🗹
Wang, Kai	Predicting nonlinear thermoacoustic	modes in annular combustors by com-
Laera, Davide	bining a 2D low-order network mode Describing Functions (STC 6)	el and experimentally-measured Flame
Yang, Dong	In annular combustors, thermoacoustic in both longitudinal and circumferential dire longitudinal, spinning, standing and slar performed in the MICCA annular combusto previous studies (Stow and Dowling (2004) network model which considers 16 discr describing functions obtained from experin modes established in the annular combust al. (2017b)) where the burners were assu only spinning or longitudinal modes could allows to predict all mode patterns. The pro can be predicted by using the FDF obtai when pure spinning mode occurs. Howev can be also found by using the same FDF modes, except for the standing mode can a to the pure standing mode experimental ca cycles are validated by comparing with nu explanation is needed to explain why only	hstabilities may involve waves propagating in ctions. Recent experiments have found pure the modes. This refers to the experiments r from EM2C Laboratory. In this work, following and Yang et al. (2019)), a novel 2D low-order ete burners coupled with independent flame nents is adopted to predict the thermoacoustic tor. Differently from previous studies (Laera et umed as a continuous annulus, resulting that be considered, the discrete burner approach esent results show that the spinning limit cycle ined under the same experimental condition ver, longitudinal, standing and slanted modes 5. Similarly, longitudinal, spinning and slanted also be found by using the FDF corresponding use. The respective spinning and standing limit merical simulations and experiments. Further one mode appears in each experiment.

Wang, Yichen	A model of acoustic reflection co	efficient in the transition ducts of can-
Yang, Dong	annular combustors based on mod	le matching method (STC 5)
Zhu, Min	Heavy-duty land-based gas turbines with thermoacoustic modes with close frequent Bloch boundary condition is often used to reasonable to consider a full 2D acoustic to use an equivalent reflection coefficien model. The quasi-one dimensional model components in the 2D acoustic field. The when the frequency is low enough and the present a 2D theoretical model using the modal components into consideration. The modes have an effect on the phase of refl the frequency is larger than the cut-off f extended to a reflection coefficient mater acoustic characteristics. The reflection r sectional area ratio ,Helmholtz number to Bloch number. The eigenvalue problem of and the oscillation frequency and growth RCM. This is validated by comparing with high-frequency modes.	can-annular combustors usually exhibit a set of ncies. Because of the rotational symmetry, the o simplify the combustors. Although it is more field in the transition duct, it is more convenient nt which is actually a quasi-one dimensional cannot naturally consider the high-order modal erefore, the reflection coefficient is useful only e gap length is short enough. In this paper, we mode matching method to take the high order The results show that the high-order acoustic lected waves in the low frequency range. When frequency, the reflection coefficient should be rix (RCM) in order to accurately describe the matrix depends on the nondimensional cross- based on the length of the transition duct and a four-flames can-annular combustor is studied, rate could be predicted accurately by using the numerical solutions for capturing both low-and
	Detailed Schedule To	Full-Text 3
Wei, Jiasen	Noise in a Rijke tube with mean flo	ow and a non-uniform temperature field
Arabi, Sadaf	(510 24)	
Pralits, Jan. O.	In industrial combustion systems, noise fro	om various sources is a prevalent challenge that External noise introduces complexities, poten-
Bottaro, Alessandro	tially leading to untimely transitions and alterations in stability behaviors. This research introduces a comprehensive and adaptable framework designed to model and forecast thermoacoustic instabilities within a Rijke tube, utilizing a Green's function approach. The framework encompasses factors such as an amplitude-dependent nonlinear heat source, a steady mean flow, and stochastic additive noise. Stability evaluations are conducted across distinct mean flow velocities, employing heat source positioning as a key control parameter. Variations in frequency and growth rate are identified concerning diverse Mach numbers. Additionally, the study indicates the bistable regions become wider when the mean flow is included, because of the hysteresis effects. The investigation delves into two noise categories—white noise and pink noise—integrated into the system as additive sources. The findings shed light on triggering phenomena that emerge as noise levels increase. Particularly, the study shows the profound influence of pink noise on system stability, surpassing the effects induced by white noise. This research contributes to a deeper comprehension of the intricate interplay between noise, system parameters, and stability in combustion systems, providing insights crucial for enhancing system design and operation.	
Heckl, Maria		
	Detailed Schedule %	Full-Text 🗹

Wildemans, Roeland	Experimental validation of dat	ta-driven nonlinear dynamical flame model
Kornilov, Viktor	(STC 14)	
Lopez Arteaga, Ines	In this paper, a new nonlinear dyna experimentally validated. The nonlin identified with the data-driven method based on time-series of self-excite acoustic mode. This flame model able to accurately describe the self- it is shown that this model also pr in a wide range of acoustic embed with the response of an experimer of acoustic embeddings, since the mufflers and the length of the ups model response is in good agreen of acoustic embeddings. The mod beating oscillations. Furthermore, the model since it predicts the single fre unstable modes.	amical flame model for laminar premixed flames is hear governing equations of the flame dynamics are d of sparse identification of nonlinear dynamics only d oscillations produced by a pure intrinsic thermo- has the structure of two coupled oscillators and is excited oscillations of pure ITA modes. In this paper rovides a good description of the flame dynamics ldings. Thereto, the model response is compared that setup. This setup can simulate a wide variety reflection coefficients of the up- and downstream thream duct can easily be varied. In general, the nent with the experimental data for a wide variety el is capable of producing both the limit cycle and the importance of modal coupling is elucidated by the quency limit cycles accurately in case of two linearly
	Detailed Schedule 🗞	Full-Text 🖸
Xu, Liangliang	Investigation on a frequency of	drop of combustion instability in a lean pre-
Zheng, Jianyi	mixed single swirl burner (STC	; 44)
Xia, Xi	Combustion instability presents a signature of the combustors. The shifting frequency	gnificant challenge within lean premixed gas turbine
Qi, Fei	with the flame configuration within governing frequency shifts during s bustors remain incompletely unders of frequency reduction in combustic within a lean premixed swirl-bluff bor gate these dynamics, we construct analyzing the instability patterns of illuminate a distinct correlation betw quency reduction. Notably, our mod induce a transition in the flame str terms of both gain and time delay. O demonstrating that as the frequency its original position and subsequer observations lead us to a preliminar induced by alterations in the flame perturbations.	a swirl burner. However, the intricate mechanisms elf-excited thermoacoustic instabilities in swirl com- stood. In this study, we delve into the phenomenon on oscillations under constant operating conditions dy stabilized combustor. To comprehensively investi- a low-order network model aimed at predicting and thermalacoustic modes. Our experimental findings veen changes in flame shape and the observed fre- eling results reveal that large-amplitude oscillations ucture, thereby impacting the flame's response in ptical diagnostic measurements offer further insights, decreases, the flame undergoes a detachment from ntly reattaches to the rim of the bluff body. These y conclusion: the reduction in frequency is primarily e's configuration, driven by an increase in velocity
	Detailed Schedule 🗞	Full-Text 🗹

Yang, Qianwen	A modified Helmholtz resonator com	nbined with membrane (STC 32)	
Yu, Zhijian	This paper investigates the acquetic perfo	rmance of two kinds of Helmholtz resonator	
Zhu, Min	This paper investigates the acoustic period combined with circular membrane. The of bottom and middle of cavity respectively. low-order network is established, in which the out according to the motion governing equa following study mainly focuses on the effe on HR and attempts to observe the actual experiments. The theoretical results revea more resonance peaks to HR, relevant to the mode. Additionally, the resonance freque the rising pre-stretch tension imposed on theoretical model are fulfilled in experiment achieved. The behavior of clamped mem predicted results and experimental investiga of membrane can not only extend the wor it possible to take effect in the lower freque This may contribute to improving the acous structures and complex operating condition	A theoretical model with the application of the acoustic impedance of membrane is figured ation and clamped boundary conditions. The ect of membrane in different vibration modes performance of modified resonators though at that the application of membrane introduce e material properties and the order of vibration encies of resonators will increase along with membrane. The phenomena described by nts and a good agreement between them is abrane is also well illustrated. Based on the ation, it can be concluded that the application rking frequency range of HR, but also make uency range without increasing the volume. stic properties of HR in compact mechanical ns.	
	Detailed Schedule 🗞	Full-Text 🗹	
Yin, Liming	Modal coupling and mode degenerated Helmholtz resonators (STC 33)	cy in annular combustor with multiple	
Dong, Yang			
	Modern aero-engines and power generation where many burners are installed in the c usually operate under lean-premixed conce acoustic disturbance; this may cause therm is determined, our previous work has sho capture different thermoacoustic oscillation longitudinal, circumferentially spinning/sta order network modelling tool has been rece analysing thermoacoustic oscillations in any have been widely used for damping thermo the presence of HRs can cause modification of the system, leading to the coupling betwee HRs are incorporated into the aforemention all resonators are the same and uniformly of the number of HRs on the nature of the t	n gas turbines often use annular combustors, ircumferential direction. These gas turbines ditions, which make the flame susceptible to oacoustic oscillations. When the flame model with that a 2-D low-order network model can on modes in annular combustors, including anding, and slanted modes. This kind of low- ognised as a computationally efficient way of bular combustors. Helmholtz resonators (HRs) bacoustic oscillations. In annular combustors, is to the natural frequencies and mode shapes een different modal components. In this paper, ned low-order network model. Assuming that distributed over the circumference, the effect thermoacoustic modes are studied in detail.	
Yoko, Matthew	Data-driven modelling of thermoacoustic instability in a ducted conical		
---	--	-------------	--
Juniper, Matthew P.	flame (STC 16)		
	We learn the most probable parameters of a thermoacoustic network model from experi- mental data using Bayesian data assimilation. We first perform a series of automated experiments on a ducted flame rig. We then propose several candidate models, and assimilate the data into each model to find the most probable parameters for that model. We rank the candidate models based on their evidence to select the most probable models. We begin by constructing a quantitatively accurate model of the acoustics of the cold rig. We then propose several candidate models for the fluctuating heat release rate and rank them according to their evidence, given the data. We find that the most probable model is influenced by the velocity perturbations from both the burner tube and the duct, even though studies in the literature typically neglect either one of these. We infer the flame transfer functions for 24 flames using only pressure measurements. We find that our inferred flame transfer functions are generally consistent with those from several studies in the literature.		
	Detailed Schedule 🗞	Full-Text 🗹	
zur Nedden, Philipp	Investigating the influence of hydrogen-rich fuel mixtures on the assess-		
zur Nedden, Philipp Paschereit, Christian Oliver Orchini, Alessandro	ment of the flame transfer function (STC 56) To achieve the decarbonization of electrical power generation, gas turbines need to be upgraded to combust high-hydrogen content fuels reliably. One of the main challenges in this upgrade is the burner design. A promising burner concept for a high-hydrogen fuel mixture is a jet burner, which is highly flashback resistant thanks to its high bulk velocity. Due to its non-acoustically compact extension and the presence of hydrogen in the fuel mixture, new challenges arise in assessing the (thermo)acoustic response of this burner design. A burner transfer matrix (BTM) and the flame transfer function (FTF) or transfer matrix (FTM) are typically measured with the multi-microphone method (MMM) to assess the performance of new burner types in relation to thermoacoustic stability. With the switch towards hydrogen, the fuel/air mixture is significantly altered in its properties regarding the speed of sound and density, which are of fundamental importance to acoustic propagation and the accuracy of the MMM. The influence of the preheating temperature during the measurement of the BTM with a non-reactive mixture to match the speed of sound of the hydrogen-air mixture required in reactive conditions. Additionally, we present an analytical model for the jet burner transfer matrix, which is validated against the experimental data showing good agreement. The influence of the variation in reactant composition of the BTM on the FTM assessment is noticeable. For the assessment of the FTF, the influence of the differing BTMs due to varying reactants is small on the phase values and noticeable in the gain values.		